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To isolate the neural mechanisms associated with
recognizing objects from those processing basic visual
properties, control stimuli are required that contain the
same perceptual properties as the objects but are
unrecognizable. We demonstrate that conventional
methods for generating control stimuli (phase
scrambling, box scrambling, texture scrambling) yield
poor controls because they dramatically distort the basic
visual properties (e.g., spatial frequency, perceptual
organization) to which even the earliest stages of visual
processing are sensitive. We developed a new scrambling
method, using a diffeomorphic transformation that
preserves the basic perceptual properties of the image
while removing meaning. We acquired perceptual ratings
to determine the least amount of scrambling necessary
to remove recognition. We hypothesized that our
‘‘diffeomorphic’’ images would produce neural activity at
the earliest stages of the visual system that more closely
matched activity in response to intact images relative to
the other scrambling methods. To test this hypothesis,
we used the HMAX computational model of object
recognition and compared the simulated neural activity
at the earliest stages of the visual system (layers S1, C1,
and S2) between a set of 149 images scrambled using
each distortion method to their intact version. We found
that scrambled ‘‘diffeomorphed’’ images were
indistinguishable to intact images in each layer of the
model, but all of the other distortion methods yielded
quite different patterns. Our results indicate that
‘‘diffeomorphed’’ images serve as more appropriate

control stimuli in neuroimaging studies that aim to
disentangle the representations of perceptual and
semantic object properties.

Introduction

To create a rich perceptual representation of a real-
world object, the visual system must integrate its many
constituent features. In a hierarchical fashion, low-level
perceptual features (e.g., orientation, spatial frequency)
are extracted in early visual cortex (striate and
extrastriate cortex; Hubel & Wiesel, 1968) while
increasingly complex features (e.g., shapes) are pro-
cessed in more anterior regions of the ventral visual
stream (Felleman & Essen, 1991). At still higher stages
of the visual cascade, these representations undergo an
additional level of abstraction when an object is
recognized (Peelen & Caramazza, 2012) and is assigned
to a category (Ishai, Ungerleider, Martin, & Haxby,
2000; Tanaka, 1996).

To isolate a brain region’s responsiveness to a
particular visual feature, that feature must be manipu-
lated in a way that is not confounded with others. To
investigate the neural mechanisms underlying object
recognition in anterior visual areas using neuroimaging,
it is common to compare the brain’s response in these
regions to stimuli that can be recognized with control
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stimuli that cannot (Epstein & Kanwisher, 1998; Grill-
Spector et al., 1998; Kanwisher, McDermott, & Chun,
1997; Kourtzi & Kanwisher, 2000; Lerner, Hendler,
Ben-Bashat, Harel, & Malach, 2001). When using this
experimental approach, stimuli should be designed
carefully to manipulate how easily they are recognized
while preserving their basic visual properties. This is
pertinent when examining object recognition and
semantic processing along the visual hierarchy up to the
inferior temporal cortex. Traditionally, two methods
have been used to create control stimuli: phase
scrambling and box scrambling, but we believe these are
inadequate for most applications. Our concern is that in
the process of making images unrecognizable their basic
visual features are changed, either by introducing
artifacts (box scrambling; Vogels, 1999) or by removing
crucial information (phase scrambling; Oppenheim &
Lim, 1981; Thomson, 1999) to which even the early
visual system is sensitive. When basic visual features are
confounded with recognizability, it is not clear whether a
difference in neural activity in anterior regions between
control stimuli and their intact counterparts is a result of
the manipulation of meaning or whether it is merely a
result of different information being fed forward from
early visual regions.

The aim of the current study is to (a) introduce novel
control stimuli that we call ‘‘diffeomorphed’’ images that
have a number of elegant properties and (b) investigate
whether ‘‘diffeomorphed’’ images are superior at pre-
serving fundamental features of the intact image while
sufficiently distorting it to the point at which it is no
longer recognizable. To investigate which of the
scrambling methods introduced differences in basic
visual features, we simulated neural activity at three
stages of visual processing (S1, C1, C2) using the
HMAX model (Riesenhuber & Poggio, 2002). These
stages of the HMAX model are designed to simulate the
processes that precede object recognition, but crucially,
they do not have any stored representations that would
give them the capacity for object recognition. Any
differences between intact and scrambled stimuli at these
stages of processing, therefore, must reflect poor control
of basic visual features. The HMAX response at each
level of processing evoked by intact images was
compared to that evoked by images generated using our
new scrambling method and images created using three
methods: box scrambling, phase scrambling, and a
method called texture scrambling designed by Portilla
and Simoncelli (2000), which has been implemented in
many studies on perceptual processing (Balas, Nakano,
& Rosenholtz, 2009; Greene & Oliva, 2009; Rousselet,
Pernet, Bennett, & Sekuler, 2008).

To preview our results, existing scrambling methods
provide poor control over basic visual features, and
diffeomorphed images evoked simulated visual activity
that closely mirrored that evoked by intact objects and

serve as better controls for any neuroimaging investi-
gation in which object recognizability is manipulated.

Methods

Stimuli

A set of 149 images was drawn from the Hemera
image database (Hemera Images: http://www.hemera.
com/). Images were in color, 500 · 500 pixels in size,
and positioned centrally on a white background (see
Figure 1a for sample images). The images were divided
into 13 categories: sporting equipment, shoes, elec-
tronics, kitchen supplies, office supplies, instruments,
tools, clothing, faces, mammals, birds, bikes, and fruit.
The categories could also be divided into subsets
thought to be important in human semantic represen-
tation, such as living versus nonliving (Costanzo et al.,
2013) or mobile versus stationary (Kriegeskorte et al.,
2008). We compared our ‘‘diffeomorphed’’ images to
three other image scrambling methods prevalent in the
perception literature.

Diffeomorphic transformation

Diffeomorphic transformations are smooth, contin-
uous, and invertible: Imagine printing the image on a
rubber sheet and then distorting it without tearing.
There is a one-to-one mapping between the source and
target spaces (i.e., no duplication or removal of parts).
As the transformation is continuous across space, if
there were N islands of contiguous nonbackground
pixels in the intact image, there would be N islands in
the scrambled image. This is an important control, as
figure–ground grouping through spatial proximity is
known to be perceptually salient (Koffka, 1935), and
there are brain regions that respond with the number of
objects (Cusack, 2005; Cusack, Mitchell, & Duncan,
2009).

Our diffeomorphic transformation was created by
repeatedly applying a flow field generated from a set of
two-dimensional cosine components with random
phase and amplitude. Each pixel had an equal chance
of being expanded or contracted (i.e., mean Jacobian¼
1), so on average, the diffeomorphic scrambled objects
had the same number of nonbackground pixels as the
intact objects. One iteration of the flow field was
implemented through the following transformation:

Inþ1ðx; yÞ ¼ In

�
f0ðx; yÞ; f1ðx; yÞ

�
ð1Þ

where In is the image on iteration n, x and y are the
pixel coordinates, and n is the iteration number.
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Figure 1. (A) Examples of diffeomorphed images from four object categories at different stages of scrambling. (B) A sample object

(intact; top row) with the same object after it was scrambled using the four scrambling methods of interest (‘‘diffeomorphing,’’
texture, phase, and box). (C) The same object (and all scrambled versions) represented at a single scale in layer S1 of the HMAX

model.
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The flow fields were defined by

fiðx; yÞ ¼
X6

k¼1

X6

l¼1

aiðk; lÞcos
2pkx
N
þ piðk; lÞ

� �

ð2Þ
where ai(k,l) and pi(k,l) are the amplitude and phase of
the cosine components, each selected from a random
uniform distribution.

There were 20 steps. To reduce blurring through
interpolation errors, the images were upsampled by a
factor of two prior to warping. Linear interpolation was
used, and the same warp fields were applied to each
color plane (R, G, B). To remove the potential for
artificial differences in the spatial frequency between
diffeomorphic and intact images due to residual
blurring, after the transformation, we matched the
spatial power spectrum of the intact images to the
diffeomorphic images (sample image in Figure 1a). In
the current study, we created diffeomorphed images of
isolated real-world objects; however, this scrambling
method can be applied to any stimulus. The Matlab
script for generating diffeomorphed images can be
downloaded at http://www.cusacklab.org/?page_id¼222.

Rating experiment: Identifying the amount of
diffeomorphic warping necessary to remove
meaning

The diffeomorphic transformation allows for
straightforward manipulation of the amount images
are scrambled. To identify the minimum amount of
scrambling necessary for our diffeomorphed images to
become unrecognizable, we acquired perceptual ratings
for each image. We incrementally scrambled objects
into 20 distinct levels (level one contained the least
amount of scrambling and level 20 the most), creating
20 images for each object, corresponding to every level
of scrambling. The flow fields f were normalized so that
they had a root mean square of unity and then
multiplied by a scaling factor chosen in pilot viewings
(3.75) of the upsampled pixels between adjacent images.

Using Amazon’s Mechanical Turk (a crowdsourcing
resource), we asked ‘‘workers’’ to provide perceptual
ratings for each object. Ethical approval was obtained
from the Western Health Sciences Research Ethics
Board. A total of 415 ‘‘workers’’ completed 15,600
trials and were paid approximately $2 per hour. Twenty
sets of the stimuli were created so that each object was
presented once at a single warping level within each set,
but across all sets, every warping level was tested for
every object. Each worker was permitted to respond to
all objects, but they were limited to rating only one of
the 20 sets that were assigned randomly to preclude

biased ratings due to prior exposure to a different level
of scrambling for the same object. Their task was to
indicate how easily they could identify the object in the
image by selecting one of the following perceptibility
ratings: 1 (no, not at all), 2 (I’m not sure, but I can take
a guess), 3 (I can see it fairly well), and 4 (I know
exactly what it is). We also asked the workers to make a
forced-choice report on the identity of an object. We
concatenated all responses from each worker and
computed an average perceptual rating for each
category. We then selected the warping level that
corresponded with a perceptibility rating of 1.5
separately for each category and applied that level of
scrambling to all images within that category. These
images, along with images created using the other
forms of scrambling, were used in the HMAX
simulations to compare with intact images.

Box scrambling

The first method we compared, box scrambling, is
commonly used probably due to its simplicity. Like the
children’s puzzle, the image is divided by an invisible
grid and the squares rearranged. To create sufficiently
scrambled images, we divided the intact image into
1,250 independent ‘‘boxes’’ and randomly repositioned
each box within the confines of the images (Figure 1b).
Varying the number of boxes changes the resolution of
the scrambling, which interacts with how easily the
scrambled image is discerned. For instance, reducing
the number of sections produces larger boxes that may
leave enough information per box to help identify the
object.

Phase scrambling

The second method we tested was phase scrambling.
Images were scrambled by computing a two-dimen-
sional fast Fourier transform (FFT), yielding a
complex (magnitude and phase) representation. The
phase values were then randomized by assigning a
random value to each element taken from a uniform
distribution across the range (�p, p); an inverse FFT
was applied to the resulting magnitude/phase maps to
produce a scrambled version (Figure 1b). Variations to
this method have been applied in previous studies
(Koenig-Robert & Vanrullen, 2013; Malach et al.,
1995) with new variations developed more recently,
such as Dakin, Hess, Ledgeway, and Achtman’s (2002)
weighted mean phase algorithm (Ales, Farzin, Rossion,
& Norcia, 2012). The underlying intention across all
variations is that each scrambled image contains the
same frequency spectrum as the intact image. Although
this is true when calculated in the pixel space of the
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image, it ceases to become true once the image enters
the filters of the eye and the visual system, which are
sensitive to the visual features created by smooth
changes in phase with frequency that are typical in
natural images and lost during phase scrambling. This
will be quantified in the S1 simulation of the earliest
cortical processing in the visual system.

Texture scrambling

We also tested a newer scrambling method devel-
oped by Portilla and Simoncelli (2000) using a texture
synthesis algorithm. This approach extracts over 700
parameters per image using linear filters at a range of
orientations and scales to resemble orientation and
spatial frequency tuning of simple striate cortex cells
(Figure 1b). Included in this set of parameters are pixel
statistics (variance, skewness and kurtosis, and maxi-
mum and minimum intensity values) in an attempt to
ensure texture-scrambled images maintain equal lumi-
nance. The set of parameters also includes correlations
across filter pairs that have the same orientation and
spatial frequency but different phase, giving rise to
periodic structure, such as contours. A synthesis
process, which starts from a sample of Gaussian white
noise, is then conducted and is iteratively modified so
that its statistics converge on the parameters extracted
from the intact image.

Neural simulations: HMAX model of object
perception

The HMAX standard model of object perception
was designed to simulate neural activity at distinct
stages along the visual hierarchy based on biologically
feasible principles (Riesenhuber & Poggio, 2002). For a
more detailed description of their model along with the
Matlab code, refer to http://maxlab.neuro.georgetown.
edu/hmax/#standard. Briefly, in the model, perception
of complex objects is driven solely by feed-forward
processes, whereby input to each stage comes from the
maximized neural output at the immediately preceding
stage. We ran 149 intact images, along with diffeo-
morphic transformed, phase scrambled, box scrambled,
and texture scrambled versions of each image, through
the HMAX model and used the simulated output at
layers S1, C1, and C2 to determine how similar each of
the scrambled images were in their basic visual features
relative to the intact versions (see Figure 1c for a
sample image from each scrambling method from a
single scale in layer S1).

Layer S1 is an approximation of classic simple cells
found in V1 that take the form of Gabor functions. To
match the tuning properties of V1 neurons, units in

layer S1 were set to be most responsive to orientation,
spatial location, and spatial frequency. The receptive
field of each of the cells was simulated by Gabor filters
in a pyramidal structure ranging from seven to 37 pixels
in steps of two pixels at four orientations (08, 458, 908,
and 1358), producing 64 different S1 receptive field
types (16 scales · four orientations). The next layer,
C1, corresponds to complex cortical cells in the striate
cortex. Units in this layer are generated using a MAX
pooling function, selecting the strongest outputs of
neighboring units in layer S1 that have similar
orientation preference, spatial frequency tuning and
receptive field locations (eight scales · four orienta-
tions). As a consequence, these units have larger
receptive fields, which show more tolerance to size,
shape, and spatial position. The last stage in the model,
C2, is computed by taking the global maximum over all
scales and positions from the S2 layer; S2 units are
inputs from C1 units with similar tuning properties that
are pooled over local neighborhoods that respond most
strongly to specific prototype images. This results in an
S1 layer that is selective to more complex features,
reflecting neurons in the V2 or V4 extrastriate cortex.
The pooled inputs, using the MAX operation, drive the
C2 layer (256 units) that is invariant to size (pooling all
filter sizes) and position (pooling over scales), reflecting
the properties of a neuron in visual area V4 or posterior
inferior temporal (pIT) cortex (for a detailed overview,
refer to Serre, Wolf, Bileschi, Riesenhuber, & Poggio,
2007). Outputs at each of the three layers of interest
(S1, C1, and C2) were concatenated across all scales
and orientations to get an overall representation for
each image and scrambling method.

Evaluation of HMAX results

To see how well matched the image sets were in their
basic visual features, we examined the simulated neural
activity produced by the HMAX model at each layer
(S1, C1, and C2) in response to the intact and four sets
of scrambled images. We inspected the mean activity
across all simulated neurons produced by each object
and the distribution (reduced bins at layers S1 and C1
to smooth spikes in activity solely due to misaligned
patterns of neural activity across the different scales) of
mean activity across objects. Within each layer, we
conducted paired t tests to see if there was a difference
between each possible pair of image sets (intact vs.
diffeomorphed and so on).

Even if the mean activity does not discriminate
between image sets, perhaps the pattern or distribution
of activity within a layer does? To investigate this, we
trained a linear discriminant classifier (using Matlab’s
classify function) to discriminate between intact and
scrambled objects from either the vector of activations
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or the histogram of activity across all simulated
neurons. We used a leave-one-object-out cross-valida-
tion approach. That is, for each comparison, the output
from all images but one were combined to form the
training set, and the output from the remaining image
was used as the test set (ensuring the training and test
sets are independent). The classifier used the activity
patterns in the training set to predict to which of the
two classes (intact or scrambled) in the training set the
activity in the test set belonged. The total number of
correct classifications across train/test folds was calcu-
lated for each of the scrambling methods, and the
inverse binomial distribution function was used to test
whether prediction was above chance (50%).

The output from layer S1 was intractably large, and
so we randomly sampled a subset of simulated neurons
from layer S1 to match the size to the output from layer
C1 before running the classifications. To ensure the
results were not an artifact of a particular random
sample, we repeated the group level and classification
analyses for 10 iterations. It was highly stable across
random samples, and we report the averaged statistical
output across all iterations. To ensure estimability of
the covariance matrix for the linear discriminant
analysis, prior to classification of layers S1 and C1, we
conducted dimension reduction using principal com-
ponents analysis, selecting sufficient top components to
explain 99% of the variance.

Potential of modified phase- and box-
scrambling procedures

The procedure described thus far compared diffeo-
morphic warping, calibrated to be theminimal amount to
impact recognizability, with the conventional phase- and
box-scrambling procedures in which there is no calibra-
tion and substantial warping to ensure recognizability is
impacted. In a final analysis, we examined whether, as an
alternative to the diffeomorphic procedure, there is the
potential for the conventional methods to be used in a
modified way by reducing the amount of warping (thus
reducing the visual distortions they introduce). Todo this,
we parametrically varied the degree of warping and
examined its effect on simulated neural output and
recognizability. We hypothesized that for diffeomorphic
scrambling the magnitude of neural activity would be
relatively invariant to the degree of warping whereas
introducing even small amounts of phase and box
scrambling would produce large differences in neural
activity even before any impact on recognizability.

We randomly selected an image from each category
(13 in total) and produced 20 images at different levels of
phase, box, and diffeomorphic scrambling (no method
was available to parametrically vary texture scrambling).
Images were incrementally and increasingly distorted

starting from level 1 (no scrambling and easily
identifiable) to level 20 (maximum scrambling and, in
our judgment, unrecognizable). For box scrambling, we
manipulated the degree of warping by varying the
number of swapped ‘‘boxes’’ from 0 (intact) to 1,250
(fully scrambled). We modified phase scrambling by
varying the proportion of the phase values that were
randomized (0% is an intact image, and 100% is fully
phase scrambled). To maximize sensitivity to changes in
neural signal with diffeomorphic warping, we used an
even wider range of distortion than in the previous
analyses (4· larger). Neural changes were quantified in
the highest layer (C2) of the HMAX model, the closest
putative input to recognition processes. To quantify
change, we computed the mean absolute percentage
deviation in simulated neural activity at each of the 20
levels of scrambling (across image categories) from the
neural output in response relative to the intact versions.

Results

Perceptual ratings

We found that recognition ratings of scrambled
objects differed depending on the category to which they
belonged (Figure 2a). That is, categories such as faces
and bikes were most impervious to scrambling and
required a relatively higher degree of scrambling before
objects were deemed unrecognizable. Conversely, in-
struments and kitchen supplies were most susceptible to
scrambling. To estimate the warping level required to get
a clarity rating of 1.5, we interpolated using nonlinear
least-squares regression (Matlab’s nlinfit function).
When a category had no warping level with a clarity
rating below 1.5, we extrapolated using this fit. In Figure
2b, we plot the resulting levels of scrambling for each
object across category used in the subsequent modeling.
Accuracy of participants’ semantic responses in the
forced-choice task with a clarity rating of 1.5 was
estimated to be 25%, computed by interpolating between
a rating of one (2.27%) and a rating of two (47.76%).
This shows a strong (although not total) manipulation in
the degree of meaning. Furthermore, it is likely that
some of this residual recognition is a result of a cognitive
level of deduction, exploiting cues, such as color, that
may not reflect object recognition processes in the
ventral visual stream.

Mean activity across neurons within each layer

Output from all three layers of the HMAX model
indicated substantial visual differences between the
intact images and those from previous scrambling
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methods. In contrast, the diffeomorphic images closely
resembled intact images in their visual features (Figure
3). In layer S1, the results of paired t tests showed no
significant difference in mean neural activity between

intact and diffeomorphed images, t(1,296)¼ 0.69, p¼
0.49. However, relative to the other scrambling
methods (phase, box, and texture scrambling), diffeo-
morphed images produced significantly less activity,

Figure 2. (A) Averaged perceptual ratings (n¼ 415 participants) collapsed across objects in each category. Participants indicated, on a

scale from 1 to 4, how easily they could recognize objects presented at one of 20 diffeomorphic scrambling levels, shown on the x-

axis. (B) For each category, the amount of diffeomorphic scrambling necessary to obtain a rating of 0.5.
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Figure 3. (A) Mean simulated neural activity at layer S1 of the HMAX model for all 149 objects presented as intact and scrambled

using each of the scrambling methods. (B) Distribution of neural activity averaged across all of the 149 objects and simulated neurons

from layer C1 and (C) layer C2.
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t(1,296) . 11.97, p , 0.0001 (Figures 3 and 4, top
panels). Further analysis revealed that the mean
activity associated with texture scrambling was signif-
icantly different than that produced by phase scram-
bling, t(1,296)¼ 2.18, p¼ 0.03; however, this difference
did not reach significance after applying Bonferroni
correction, and box scrambling produced activity that
was most different from all other image scrambling
methods, t(1,296) . 26.69, p , 0.0001.

We found a similar pattern of results at layer C1 with
equivalent levels of simulated neural activity for both
diffeomorphed and intact images, t(1,296)¼ 0.73, p¼
0.46, which were each significantly different from all
other scrambling methods, t(1,296) . 13.15, p , 0.0001
(Figures 3 and 4, middle panels). At this level, the
neural activity in response to texture scrambling and
phase scrambling was not significantly different,
t(1,296)¼1.69, p¼0.093, and box scrambling produced
neural activity that was significantly higher relative to
all other scrambling methods, t(1,296) . 28.23, p ,
0.0001.

The results were slightly different at layer C2
(thought to be analogous to V4 and pIT). Although
diffeomorphic and intact images produced similar
levels of simulated neural activity, t(1,296) ¼�1.38, p
¼ 0.17, so did three additional comparisons: phase
scrambling and intact images, t(1,296) ¼�0.502, p ¼
0.616; phase scrambling and diffeomorphic images,
t(1,296) ¼ 1.33; p ¼ 0.18; and texture scrambling and
phase scrambling, after a Bonferroni correction,
t(1,296) ¼�1.98, p ¼ 0.049. All other comparisons
with the intact images were significantly different,
t(1,296) . 4.28, p , 0.00003. We also found neural
activity for texture-scrambled and box-scrambled
images were not significantly different from each
other, t(1,296) ¼ 1.78, p ¼ 0.08, but were significantly
different from the other scrambling categories,
t(1,296) . 2.98, p , 0.0032 (Figures 3 and 4, bottom
panels).

Pattern and distribution of activity within layers

We also tested whether the pattern or the
distribution of activity within a layer was indicative
of which set an image came from. Could a classifier
be trained to use the neural outputs of the HMAX
model (raw neural activity or the distribution of that
activity) to identify whether a novel image was intact
or scrambled? Classification accuracies are reported
in Figure 5. At layer S1 (Figure 5, top row),
classification based on the distribution of neural
output across 10 permutations was at chance (deter-
mined by inverse binomial distribution functions, p ,
0.05) when discriminating between diffeomorphed
and intact images (mean: 48.42%; SD: 0.32%); all

other comparisons between intact images and images
produced by the different scrambling methods were
significantly above chance (mean: .91.85%). For the
raw pattern of activity, at layers S1, classification
accuracy between intact and diffeomorphed images
was at chance (mean: 50.03%; SD: 4.65%) as was
classification accuracy between texture-scrambled and
phase-scrambled images (mean: 49.93; SD: 2.69%).
All other pairwise classifications were significantly
above chance (mean: .62.65%). At layer C1 (Figure
5, second row), classification based on the raw neural
output (50.67%) and distribution of activity (52.34%)
was at chance when discriminating between diffeo-
morphed and intact images. The classifier significantly
differentiated intact images from all other categories
with a mean performance greater than 85.57%. In
addition, the neural activity at layer C1 between
texture scrambled and box scrambled was indistin-
guishable (47.65%).

At layer C2, we found, using the distribution of
neural activity as the feature of interest, the classifier
performed at chance when distinguishing between
intact and diffeomorphed images (51%). However, the
classifier also performed at chance when discriminating
texture-scrambled and box-scrambled images (50.34%).
The classifier significantly discriminated images for all
other pairs of scrambling methods with an accuracy
level of at least 54.7%. A slightly different pattern of
results emerged for the distribution of neural activity.
The classifier could successfully distinguish intact from
diffeomorphed images (60.69%), phase-scrambled im-
ages (61.15%), and box-scrambled images (68.5%) but
performed at chance when discriminating intact and
texture scrambled (54.06%). Accuracies for all com-
parisons at each of the three layers are presented in
Figure 5 (third row).

Potential of modified phase- and box-
scrambling procedures

We calculated the neural output at layer C2 across a
range of 20 parametrically varied levels of diffeo-
morphed, phase, and box scrambling to relate neural
activity with image recognizability. To do this, the
percentage deviation in neural activity relative to the
intact version of was averaged across 13 images (one
from each category) at each scrambling level. We found
that the percentage deviation in neural activity remains
relatively constant (ranging from 4.05% to 7.67%)
whereas even very little box and phase scrambling
produces drastic changes in neural activity, ranging
from 8.55% to 28.31% for box scrambling and 7.29% to
39.34% for phase scrambling (Figure 6) but has little
impact on recognizability.
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Figure 4. To determine whether ‘‘diffeomorphed’’ images are more visually similar to intact images relative to the other scrambling

methods, we compared the simulated visual neural response they evoke. Paired t tests revealed that across each layer (S1, C1, and

C2) of the HMAX model the neural activity in response to ‘‘diffeomorphed’’ images did not differ from the neural activity in response

to intact images.
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Figure 5. A linear discriminant classifier was used to discriminate between intact and scrambled objects using both the pattern of

neural activity across neurons (left column) and the distribution of this activity (right column) at layers S1 (top row), C1 (second row),

and C2 (third row) of the HMAX model. For layer S1, the bar graph represents mean classifier accuracy (with SEM) across 10

permutations. For layers C1 and C2, each cell contains the classifier accuracy. Each comparison across the three layers was marked

where the classifier performed significantly above chance, determined by inverse binomial distribution functions; p , 0.05.
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Discussion

Using the HMAX model (Riesenhuber & Poggio,
2002), we showed that the earliest stages of the visual
system do not respond to control stimuli generated by
phase, box, or texture scrambling in the same way as
they do to intact images. We found differences for most
measures within each layer of the model (S1, C1, C2);
the magnitude of the differences was substantial with
average neural activity around two to seven times
higher for conventionally scrambled stimuli relative to
intact stimuli. This indicates that these image sets differ
in their basic visual properties and will obstruct our
ability to isolate object recognition processes. We
conclude conventional scrambling methods make poor

controls in experiments that intend to manipulate
semantic content.

In contrast, at each layer of the HMAX model, we
found that the mean neural signal was the same for the
intact and diffeomorphed image sets. Furthermore, a
linear discriminant classifier was generally unable to
differentiate between intact and diffeomorphed images
based on either their pattern or distribution of neural
activity in each layer. Moreover, our results are not
restricted to the specific levels of scrambling assigned to
each scrambling method. Across 20 equally spaced
levels of distortion, we found the mean percentage
deviation in neural activity relative to intact images in
layer C2 remained relatively constant for diffeo-
morphed images even when we increased the amount of
scrambling by 400%. In contrast, the percentage
deviation rose sharply for clearly recognizable phase-

Figure 6. The absolute percentage deviation in neural activity relative to the intact images was computed for 20 parametrically spaced

levels of phase, box, and diffeomorphic scrambling. A representative image is presented at three arbitrary levels of scrambling (5, 10,

15) to highlight that at very little phase and box scrambling (easily identifiable) there was a drastic difference in neural activity with

little effect on recognizability whereas for diffeomorphic scrambling the neural output remained similar even for extreme levels of

distortion.
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and box-scrambled images with very little distortion.
These results indicate two things: (a) There was little in
the visual content of diffeomorphed images that
differentiates them from intact images and (b) the basic
visual properties are better preserved in diffeomorphed
images than even slight amounts of phase and box
scrambling in which the content of the image is easily
identifiable.

A number of factors contribute to the differences in
neural processing for stimuli generated using the three
conventional scrambling methods. During box scram-
bling, images are divided into an equal number of
segments (sometimes as small as individual pixels) with
each box randomly shuffled to a new location in the
image. It was assumed that because they were created
with unaltered segments of the original image, they
would be visually matched. Unfortunately, reposition-
ing pixels to different locations in the image produces
artificial edges at the borders between discontinuous
segments. The result is images that no longer retain
their original Gestalt and, even more concerning,
contain spatial frequency artifacts contingent on the
scrambling resolution. These changes produce different
patterns of neural activity (Vogels, 1999) relative to the
intact version of the image. Even with attempts to
ameliorate the effects of edges by using spatial
vignetting (convolving the edges with a linear ramp of
25-pixel width), Rainer, Augath, Trinath, and Log-
othetis (2002) found that area V1 showed a linear
relationship between activity and the amount of box
scrambling; the more scrambled an image, the higher
the activity (up to the second highest level of
scrambling when activity dropped precipitously). In
extrastriate cortex (V1, V2, V3A, V4), activity for
highly box-scrambled and intact images were similar
until the highest level of scrambling at which activity
dropped, much like in V1. These findings are consistent
with Singh, Smith, and Greenlee (2000), who found
that blood oxygenation level dependency increased in
response to grating that increased from low to medium
spatial frequencies.

The phase-scrambling method controls better for the
spatial frequency content of the image. Intact images
are decomposed into their constituent spatial frequen-
cies using a Fourier transform. The phase values are
then randomized, and the emerging scrambled versions
are reconstructed using an inverse Fourier transform
with the scrambled images containing the same power
spectrum as the corresponding intact versions. How-
ever, the visual system (or the HMAX model) is
sensitive to image features that result from the
smoothly changing, continuous phase variations with
frequency that is typical in natural images (Oppenheim
& Lim, 1981; Thomson, 1999). Artifacts therefore
result from changes to image properties as a result of
randomized phase spectra, an inherent byproduct of

this method. Thomson (1999) has demonstrated that
intact images contain higher-order statistical properties
that are absent in the phase-scrambled images primarily
driven by distortions in the local phase coherence. In
fact, phase spectra have been shown to contain
perceptually more important information than the
power spectra (Oppenheim & Lim, 1981; Thomson,
1999). That is, local phase coherence is responsible for
vital information, such as localized features, including
lines, edges, and contours (Morrone & Burr, 1988). The
loss of these structural properties and the importance
of phase coherence can have significant perceptual
consequences; the visual system is sensitive to harmonic
phase relationships even at the earliest processing
stages, such as V1 (Wang & Simoncelli, 2004), which is
reflected in an increase in perceptual sensitivity to
detecting distortions in phase-scrambled images (Bex,
2010; Kingdom, Field, & Olmos, 2007).

There have been attempts to improve the phase-
scrambling method and remove some of its limitations.
For instance, the approach proposed by Dakin et al.
(2002) improves second- (contrast) and fourth-order
(kurtosis) statistics and avoids overrepresentation of
certain phases but leads to nonuniform phase angle
steps (Ales et al., 2012). Ales et al. (2012) modified it to
produce images with coherent phase but at the cost of
randomized amplitude. Future iterations of this meth-
od might lead to further improvements, but we believe
that spatial domain techniques such as diffeomorphic
warping are more readily suited to scrambling without
altering distinct visual features.

Of the three test scrambling methods, it was the
neural activity associated with texture-scrambled im-
ages that most closely resembled that of intact images.
However, even at the earliest stages (S1, C1), differ-
ences emerged that became more pronounced at the
latest stage in the model (C2). Texture scrambling was
originally designed to synthesize visual textures with
homogeneous and consistently repeating elements that
are ideal for modeling higher-order statistics (Portilla &
Simoncelli, 2000) and was only later applied to natural
scenes. This scrambling method was never intended for
isolated objects, which contain different properties
from textures, and scenes that may partially explain the
subtle differences in neural output. More critically,
however, like the other methods, texture scrambling
distorts the Gestalt of the image while creating
irregularly shaped closed contours. The large differ-
ences at C2 may occur because of the grouping
discrepancies between the intact and texture-scrambled
images. Distorting the grouping properties of objects
also produces perceptual consequences at early pro-
cessing stages. Given the sensitivity of visual area V1 to
spatial frequencies and varying sizes of the image set,
the spatial frequency content of larger objects (lower
spatial frequency) will be differentially altered relative
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to smaller images (higher spatial frequency) by long
continuous contours (Rust & Dicarlo, 2010).

The diffeomorphic transformation did not change
basic visual properties like the other scrambling
methods. Diffeomorphic transformations are smooth,
continuous, and invertible, so the topology (with no
folding) was preserved, and the process could be
reversed to re-recreate the original intact image.
Moreover, the range of spatial frequencies was
restricted using a discrete cosine basis, ensuring that
high spatial frequency artifacts were not introduced in
the scrambled image. The final result is that the early
visual system (as modeled by Riesenhuber & Poggio,
2002) processed diffeomorphed images in much the
same way as intact images.

This method provides a first step toward overcoming
the limitations inherent to the conventional scrambling
methods. Although diffeomorphic images are a signifi-
cant improvement in the design of appropriate control
stimuli, generating fully controlled stimuli is limited by
our knowledge of the visual system. Preserving all basic
visual features of each image would require a complete
understanding of the tuning properties of all neurons
along the visual pathway in addition to how they are
influenced by connections to other neurons and behav-
ioral objectives (e.g., top-down effects). To date, this has
proven to be a considerable challenge. Attempts to find
critical features driving neural activity at each processing
stage often results in the need to generate idiosyncratic
stimuli tailored for each neuron that make comparisons
along the visual hierarchy untenable (Kobatake &
Tanaka, 1994). In fact, scrambled images can be used to
directly examine the properties of the visual system
(Murray, 2011). For instance, Freeman, Ziemba,
Heeger, Simoncelli, and Movshon (2013) generated a
model for creating synthesized images that served as
visual metamers (perceptually indistinguishable from the
intact version) to outline the receptive field sizes and
sensitivity at different eccentricities of visual area V2,
which predicts visual degradation in the periphery
associated with crowding.

It should be noted that conventional image-scram-
bling methods may be useful in contexts that focus on
specific object properties, such as demarcating cortical
regions sensitive to the presence of edges (Kovesi,
2003). Or, for example, one may be interested in brain
regions that process shape (e.g., lateral occipital
complex), in which case it might be helpful to contrast
stimuli with a defined shape with those that do not have
one. Diffeomorphic stimuli have been designed for a
particular scientific question in which visual properties
are not the focus of interest.

A complementary approach to examine the repre-
sentations along the visual pathway is to keep the stimuli
constant but change the task requirements. As outlined
by Schyns, Gosselin, and Smith (2009), diagnostic

features of images and reverse correlation can be used to
link brain activity to functional cognitive states. We
believe using diffeomorphed images might complement
this approach well; the gradual warping of diffeo-
morphed images allows for the selection of certain
diagnostic features (e.g., shape or semantics), which can
be used to differentiate confounded neural activity due
to correlated visual properties of images within catego-
ries (Rousselet, Pernet, Caldara, & Schyns, 2011).

The category-dependent perceptual ratings offer
another instance of how diffeomorphed images can
help further our understanding of object perception.
Some categories were more affected by scrambling
than others, suggesting that the visual system relies
on differing sets of features to categorize objects.
Banno and Saiki (2011) found that humans use
higher-order statistics when detecting animals in
scenes, suggesting certain higher-order image prop-
erties may be more telling of object structure in some
categories over others. Statistically regular features
are also important for recognizing objects (Gerhard,
Wichmann, & Bethge, 2013). Faces and bikes contain
highly regular properties that occur in almost every
exemplar (i.e., eyes above a nose above a mouth),
and a category like fruit contains highly discernible
properties, but there is little consistency across
exemplars. Diffeomorphed images can be used to
help outline these properties of object perception,
which can then be used to guide the selection of
better-matched control stimuli. In turn, extracting the
mechanisms governing perception at earlier stages of
perception can then be used to design better-matched
control stimuli to help explicate the mechanisms at
the highest perceptual stages.

In conclusion, we demonstrate that the simulated
neural signal in response to diffeomorphed images
more closely resembled the neural signal associated
with intact images relative to the other scrambling
methods. Moreover, the advantage of diffeomorphed
images over phase and box scrambling persists across
many levels of scrambling. This similarity is consistent
across distinct stages of the visual hierarchy (modeled
by the HMAX model). Because processing at the
earliest stages is held constant, differences in neural
activity at anterior visual areas cannot be influenced by
the properties of the image or the nature of the
information feeding in from posterior areas. We
suggest that diffeomorphed images serve as better
control stimuli and should be used in neuroimaging
studies that aim to disentangle early from later visual
processing in order to more rigorously examine the
neural mechanisms underlying perception, attention,
and memory of the real world in later stages of visual
processing.

Keywords: image scrambling, diffeomorphic transfor-
mation, control stimuli, object perception
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