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A B S T R A C T

There is strong incentive to improve our cognitive abilities, and brain training has emerged as a promising
approach for achieving this goal. While the idea that extensive ‘training’ on computerized tasks will improve
general cognitive functioning is appealing, the evidence to support this remains contentious. This is, in part,
because of poor criteria for selecting training tasks and outcome measures resulting in inconsistent definitions of
what constitutes transferable improvement to cognition. The current study used a targeted training approach to
investigate whether training on two different, but related, working memory tasks (across two experiments, with
72 participants) produced transferable benefits to similar (quantified based on cognitive and neural profiles)
untrained test tasks. Despite significant improvement on both training tasks, participants did not improve on
either test task. In fact, performance on the test tasks after training were nearly identical to a passive control
group. These results indicate that, despite maximizing the likelihood of producing transferable benefits, brain
training does not generalize, even to very similar tasks. Our study calls into question the benefit of cognitive
training beyond practice effects, and provides a new framework for future investigations into the efficacy of
brain training.

1. Introduction

The prospect of enhancing our cognitive abilities is alluring, and
there is good incentive to want to do so. Performance on measures of
different aspects of cognition, such as processing speed, reasoning, and
general intelligence have not only been linked to academic and pro-
fessional success, but also to happiness, and even life expectancy
(Calvin et al., 2011). While cognitive abilities tend to remain relatively
stable throughout the lifespan, they are not immune to fluctuations;
disease (Marinus et al., 2003; Muller et al., 2007), head injuries
(Bleiberg et al., 2004), even at a young age (Talavage et al., 2014), and
aging can all result in substantial impairments to cognition. However,
the trajectory for cognitive change is not always downward; for ex-
ample, learning through education or practice is clearly one way in
which cognition can be enhanced, and have long lasting effects (Ritchie
et al., 2013). However, the cognitive benefits associated with education
often progress slowly, require significant investment, and unfold over a
long period of time. Recently, brain (or cognitive) training has emerged
as a potential new approach for improving cognition – one that is easily
accessible and can occur on a much shorter time scale. Moreover, the
purported benefits of brain training are not limited to improving cog-
nition, but may include therapeutic benefits that slow, or even reverse,

cognitive decline across the lifespan (Anguera et al., 2013; Westerberg
et al., 2007).

Brain training rests on the assumption that regular and prolonged
"training" on computerized tasks (often marketed as "brain games") will
result in improvements, not only on the trained task, but also on un-
trained (and even unrelated) tasks, across different cognitive domains.
The focus of many brain training programs is on short-term (working)
memory - the ability to hold and manipulate information (Baddeley,
1992) – because short-term (working) memory is considered to be the
critical cognitive domain underlying generalizable gains in cognition.
This notion rests on two key assumptions: 1) that short-term (working)
memory can be improved (Klingberg, 2010), and 2) that short-term
(working) memory is closely related to other higher-order cognitive
abilities, such as, attention (Klingberg et al., 2005), reasoning, problem
solving, executive processes (Kane et al., 2004; McCabe et al., 2010;
Süß et al., 2002), multitasking (Redick et al., 2016), and even general
intelligence (Engle et al., 1999; Kane and Engle, 2002). The logic is
intuitive and appealing; brain training programs that increase short-
term (working) memory capacity will lead to performance gains across
a variety of other cognitive abilities associated with short-term
(working) memory (Klingberg, 2010) including general intelligence
(see Redick et al., 2013 for evidence why this logic is limited). The idea

https://doi.org/10.1016/j.neuropsychologia.2018.07.013
Received 31 October 2017; Received in revised form 9 July 2018; Accepted 11 July 2018

⁎ Corresponding author.
E-mail addresses: bstojan@uwo.ca (B. Stojanoski), klyons8@uwo.ca (K.M. Lyons), apearc4@uwo.ca (A.A.A. Pearce), uwocerc@uwo.ca (A.M. Owen).

Neuropsychologia 117 (2018) 541–550

Available online 25 July 2018
0028-3932/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00283932
https://www.elsevier.com/locate/neuropsychologia
https://doi.org/10.1016/j.neuropsychologia.2018.07.013
https://doi.org/10.1016/j.neuropsychologia.2018.07.013
mailto:bstojan@uwo.ca
mailto:klyons8@uwo.ca
mailto:apearc4@uwo.ca
mailto:uwocerc@uwo.ca
https://doi.org/10.1016/j.neuropsychologia.2018.07.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuropsychologia.2018.07.013&domain=pdf


has also gained some empirical support in recent years.
For example, several studies have claimed to show that training

short-term (working) memory produces generalizable improvements in
cognition across various untrained tasks, each measuring different as-
pects of cognition (Jaeggi et al., 2008). The observed benefits range
from improvements on variants of the same task (Li et al., 2008), to
improvements on similar tasks that rely on overlapping cognitive me-
chanisms (near transfer; Chein and Morrison, 2010; Dahlin et al., 2008;
Tulbure and Siberescu, 2013), to performance gains on unrelated cog-
nitive tasks and domains (far transfer;(Au et al., 2014; Caeyenberghs
et al., 2016; Chein and Morrison, 2010; Jaeggi et al., 2008; Morrison
and Chein, 2010). In fact, it has been suggested that cognitive training
can have far reaching consequences, including improvements at work
and school in activities such as reading (Dahlin, 2011; Swanson and
Jerman, 2006) and math proficiency (Bergman-Nutley and Klingberg,
2014). It has also been claimed that brain training can delay aging-
related cognitive decline and reduce the effects of cognitive disease
(Basak et al., 2008).

However, the efficacy of brain training has recently been called into
question (Simons et al., 2016). For example, some attempts to replicate
earlier findings showing brain training-related benefits have failed to
produce similar effects (Redick et al., 2013; Thompson et al., 2013).
Moreover, one large scale meta-analysis that included studies using
multiple forms of short-term (working) memory training found no
convincing evidence of transfer of benefits (near and far) to untrained
tasks (Melby-Lervåg et al., 2016). In fact, difficulties in finding such
transfer effects are not limited to short-term (working) memory based
training protocols, but extend to training involving inhibitory control
(Enge et al., 2014), video game playing (Lee et al., 2012), and decision
making (Kable et al., 2017). In one large-scale study involving more
than 11,000 participants, Owen et al. (2010) had participants train for
six weeks on a variety of tasks based on commercially available brain
training games. They found that, while performance improved on every
trained task, there were no gains in performance on untrained tests of
reasoning, verbal abilities or short-term memory.

A number of reasons have been proposed to account for these fail-
ures to reproduce the results of earlier brain-training studies, including
participant's expectations (Foroughi et al., 2016), neuroanatomical
variability (Simon et al., 2016), and methodological factors, such as,
different analysis approaches (Redick et al., 2013). However, a more
fundamental issue likely underlying the variability across studies re-
lates to inconsistent and often vague definitions of what constitutes
‘transfer’. The terms ‘near’ and ‘far’ transfer are often used to refer to
improvements in closely related and unrelated cognitive tasks, respec-
tively, yet how ‘related’ one task really is to another is often poorly
understood. In fact, the degree to which the training tasks differ from
the test tasks (and the test tasks from each other) is rarely quantified,
and tasks are often selected based on their inferred cognitive properties,
rather than some empirical measure of similarity. Without a consistent
definition of transfer, and quantifiable measures of similarity between
tasks, it is very difficult to make comparisons across studies, and assess
the reliability of any observed training related benefits.

To provide a more constrained framework for brain training, the
current study focused on two fundamental, but related issues: the
nature of the training protocol, and the selection of the tests themselves.
Two experiments were conducted that employed a targeted training
protocol; in each experiment, participants trained extensively on only
one task (unique to each experiment) measuring a single cognitive
domain – short-term (working) memory. In addition, quantifiable
measures of similarity were used to guide the selection of test tasks. The
training and test tasks were taken from the Cambridge Brain Sciences
(CBS) battery, an online suite of 12 cognitive assessment tools. One
short-term (working) memory task that involved memory for spatial
locations was selected for training in experiment 1. Two other tasks
were selected to assess the benefits of transfer, one that also involved
spatial working memory and one that was procedurally similar, yet

involved verbal working memory. These selections were made based on
quantifiable measures of similarity using a factor analysis of task per-
formance and underlying neural activity (Hampshire et al., 2012).

To ensure the results were generalizable, in experiment 2, a short-
term (working) memory task that has been widely used in brain
training studies was selected for training. The dual n-back task shares
many of the same cognitive and neural properties as the task that was
selected for training in experiment 1 (Owen et al., 2005) and has suc-
cessfully produced both near and far transfer in previous studies (Au
et al., 2016; Jaeggi et al., 2008). In experiment 2, the same two spatial
and verbal working memory tasks (that were used in experiment 1)
were used to assess the effects of training.

Based on the brain training literature, we predicted that training on
a spatial working memory task would produce transferable gains to
untrained tasks that were cognitively related (‘near transfer’). As a
control, we also expected significant gains in performance on a second
spatial short-term memory task that was almost identical to the trained
task in terms of cognitive requirements and design. Finally, we hy-
pothesized that the same results would be found when we modified the
experimental design to closely mimic that of many successful brain
training studies.

2. Methods

2.1. Experiment 1

2.1.1. Participants
Participants were recruited from two research participant pools: 1)

locally from the University of Western Ontario, using recruitment
flyers, and 2) from Mechanical Turk (MTurk), Amazon's crowdsourcing
platform. Participants recruited from MTurk who completed the task
were paid $2.00 per session (which lasted approximately 30min), and
were given a $1.00 bonus for every five sessions they completed. Those
recruited locally from the University of Western Ontario were paid the
same amount for completing the tasks at home, but were given $10/
hour to cover transportation costs if they completed the task in the lab.
To be included in the analysis, participants had to 1) complete the pre-
training test; 2) complete the post-training test; 3) complete at least 16
days of cognitive training with no more than 3 days between training
sessions. This amounted to a minimum of approximately 10 h total
training. 4) showed evidence of improved performance on the training
task based on the slope of a linear fit (mean adjusted R2). A total of 76
participants signed up for the experiment; of the 76 participants, 56 had
completed the pre- and post-test, 48 of those participants had com-
pleted at least 16 days of training, and 47 had also improved on the
training task. The 47 participants (26 females) between the ages of 20
and 62 (M = 32.89, SD = 8.41) who met all criteria were included in
the final analysis. Our final sample size exceeds that of many other
studies using different working memory tasks in context of cognitive
training that show strong training effects (see Morrison and Chein,
2011). A control group (31 participants; 14 female, ages 22–53; M =
31.35, SD = 6.77) who completed the pre- and post-training 30 days
apart, but did not engage in any cognitive training was also included.
There were no significant differences in demographic information be-
tween the training and control groups. All participants consented to
participating, and the study was approved by the Health Sciences
Research Ethics Board of the University of Western Ontario.

2.1.2. Procedure
The experiment consisted of three phases: 1) pre-training, 2)

training, and 3) post-training, which were completed over the course of
30 days. On the first day of the experiment (the pre-training phase),
each participant completed the two test tasks, which served as a base-
line measure of their ability on these tasks. The training phase started
within three days of completing the pre-training phase. Within three
days of finishing the training, participants completed the same test
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tasks to conclude the post-training phase. Each participant completed
the test tasks three consecutive times (during both the pre- and post-
training phase) to ensure an accurate and reliable measure of their
ability. The control group followed the same protocol, except they did
not participate in the training phase. In total, we used three tasks; 2 test
tasks (henceforth referred to as ‘spatial span’ and ‘digit span’) and one
training task (henceforth referred to as ‘token search’). The three tasks
were taken from Cambridge Brain Sciences (Owen et al., 2010), a suite
of twelve online tasks that measure different aspects of cognitive
function (Fig. 1).

2.1.3. Training task
In this experiment, participants trained on the token search task

(Fig. 1). This task was chosen for three reasons: 1) it is a well-validated
measure of short-term (working) memory (Owen et al., 1990, 1996;
Hampshire et al., 2012) 2) it has an overlapping cognitive and neural
profile to other short-term (working) memory tasks previously shown to
have transferable gains in cognition, such as the n-back task and 3) it
does not suffer from the same capacity limits that are characteristic of
other short-term (working) memory tasks (Jaeggi et al., 2008; Owen
et al., 2005). The task begins with a set of 4 empty squares randomly
positioned on the screen. The participant's task is to find a hidden
"token" by clicking on the squares to reveal their contents. Once the
token has been discovered, a new token is hidden behind another
square, and the participant must again find it. Once the second token
has been discovered, a third will be hidden and so on until all four
locations have been used to hide a token. Importantly, a token will
never appear in the same square twice in the same trial; the participant
must continue to search until a token has been found behind each
square. If the participant clicks on an empty square twice, or clicks on a
square where the token has been found previously, this is recorded as
an error. The task is adaptive, which makes it ideal for brain training
(Klingberg, 2010; Morrison and Chein, 2010). That is to say, the diffi-
culty level changes based on the participant's performance; the number
of squares in each trial goes down by one for every error committed,
and is increased by one if a token is found under all the available
squares. After three errors, the test ends. The participant's score on the
task is calculated as the number of discovered tokens (or number of
available squares) in the last correctly completed trial. Participants
completed 10 trials per training day (30–45min) during the training
phase, amounting to an average of 19.7 training days, and approxi-
mately 13 h of training. Each individual participant's test score was
computed by taking the mean across the 10 trials.

2.1.4. Test tasks
A unique feature of this study is that the test tasks (Fig. 1) were

selected based on quantifiable measures of similarity to the training
task, thereby operationalizing how transfer is defined and measured.
Based on a factor analysis computed by Hampshire et al. (2012) that
grouped the 12 tasks that make up CBS into three factors, the assigned
factor, and the corresponding factor loadings were selected to guide the
choice of test tasks. The digit span task was selected as a measure of
near transfer because, like the token search task, it is a short-term
(working) memory task, but in a different domain (highest factor
loading on the verbal component; see Hampshire et al., 2012). This
verbal short-term (working) memory task requires participants to re-
member a sequence of numbers that are presented in the middle of the
screen one at a time. Once the entire sequence of numbers has been
presented, participants must reproduce, in the exact same order, the
sequence of numbers they just saw using the keyboard. On every suc-
cessful trial, the number of digits in the sequence increases by one,
whereas reproducing an incorrect sequence results in one less number
in the following trial. After three errors the trial is over. The spatial
span task was selected as the second test task, and served as a control.
Spatial span is a spatial short-term memory task that loads heavily on
the same component as the token search task, and is nearly identical in
design, drawing on a similar set of cognitive and neural mechanisms
(see Owen et al., 1990, 1996). In this task, participants are required to
reproduce from memory a sequence of flashing boxes that appear
randomly every 900ms on a 4× 4 array on the screen. The number of
boxes increases, or decreases, by one for every correct and incorrect
trial, respectively.

In addition to using quantifiable measures to select test tasks that
have similar properties to the training task, these two tasks were chosen
for another reason: performance on both tasks can be improved, even
after a few trials (Bellander et al., 2011; Brehmer et al., 2012; Ericcson
et al., 1980; Ericsson and Chase, 1982). This is crucial for establishing
that the test tasks are sufficiently sensitive to detect any evidence of
transfer.

2.1.5. Statistical analyses
Data were analysed using multiple statistical methods. Specifically,

the general linear model was used to compute mixed effects, and re-
peated measures ANOVAs, t-tests, and effect sizes. Bayesian statistics
were also used to determine the likelihood and the strength of any ef-
fects. Since frequentist and Bayesian statistics provide complimentary
perspectives to addressing the same issues (the former concerned with
Type 1 and Type 2 errors, and the latter with incorporating prior
probabilities that determine the likelihood a certain result falls under
the null hypothesis; Lakens, 2017), both are reported. To compute
Bayes Factors the statistical software JASP was used (JASP Team,
2017). The default Bayes Factor approach was utilized for model

Fig. 1. Training and test tasks: Screen shots of the two training tasks (on left: token search task and the two test tasks (on right: spatial span and digit span).
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selection using, symmetric Cauchy prior with width √2/2 which
translates to a 50% confidence that the true effect will lie between −
0.707 and 0.707. This evidentiary strength is expressed as a Bayes
Factor (Kass and Raftery, 1995), which can be interpreted as the re-
lative likelihood of one model versus another given the data and a
certain prior expectation. A Bayes Factor of, e.g., 7, in favour of a re-
gression model suggests that the data are seven times more likely under
that model than an intercept only model for a given prior (for an em-
pirical comparison of p-values and Bayes factors, see Kruschke (2013).

The data were analysed in two ways. First, data from all the trained
participants were included to determine i) whether there was a sig-
nificant training effect (direct transfer), ii) whether these individuals
also improved on the untrained test tasks and iii) whether those who
trained performed better than those in the control group (completed no
brain training). To increase the likelihood of finding evidence for near
transfer effects, we divided the participants into "high learners" and
"low learners", based on a median split of their performance on the
training task (token search). Transfer was again assessed, but using the
data only from the "high learners". Note, we did not compare perfor-
mance between "high learners" and “low learners” as responder ana-
lyses are limited and can introduces biases (Tidwell et al., 2014)

2.2. Experiment 2

2.2.1. Participants
Participants were recruited from MTurk, and were paid $4.00 per

session (which lasted approximately 30–45min). They were also given
a $1.00 bonus for every five sessions they completed. The same inclu-
sion criteria outlined in experiment 1 were used: participants had to
complete both the pre- and post-training phase, and at least 16 days of
training with no more than 3 days between training sessions
(amounting to a minimum of approximately 10 h) and improve on the
training task (based on the slope of a linear fit – mean adjusted R2). A
total of 24 participants (out of 64 who registered) completed the study,
of which 21 participants (9 females) between the ages of 21 and 52 (M
= 35.67, SD = 9.01) showed a positive benefit of training and were
included in the final analysis. Our sample is similar to other studies
(e.g., Dahlin et al., 2008; Jaeggi et al., 2010; Thompson et al., 2013)
that have used the same task and shown strong training effects. The
same control group in Experiment 1 were also included in this experi-
ment (see details above).

2.2.2. Training task
In this experiment, participants trained on the dual n-back task ( see

Jaeggi et al., 2008). For this task, participants are required to monitor
and respond to visually presented sequences of squares (specifically
their location, much like the spatial span task) while letters are aurally
presented simultaneously. Each square and letter are presented for
500ms, during which participants must indicate whether the current
stimulus (a) is a visual match (same location; left arrow key), (b) an
auditory match (same letter; right arrow key), (c) both a visual and
auditory match (same location and letter; both left and right arrow
keys), or (d) no match (different location and letter; no key response),
as the stimulus that appeared n trials back. Participants completed 10
blocks of the task, where each block consisted of n+20 trials with
randomized stimuli. The task was also adaptive; that is, the participant's
performance determined the level of n for the following blocks of trials,
where 90% correct responses in one block led to an increase of one n in
the following block, and performance at less than 70% led to a decrease
of one n in the following block. Performance between those thresholds
did not result in a change in the n-value. After 10 blocks, the n-value of
the last trial was recorded as the final score of the participants, with
higher scores indicating greater short-term (working) memory capacity
than lower scores. Participants completed 10 trials per training day
during the training phase, amounting to an average of 18.86 training
days, for a total of approximately 12.5 h of training, which is longer

than the amount of training used by Jaeggi et al. (2008), and other
studies to show transferable gains after training on the dual n-back
(Lilienthal et al., 2013; Salminen et al., 2016; Schweizer et al., 2011).
Individual participant's test scores were computed by taking the mean
across the 10 trials.

The dual n-back task was selected for three primary reasons. First, it
is a measure of short-term (working) memory. Second, conceptually it is
very similar to the token search task used in experiment 1 – in fact, the
pattern of neural activity produced by the dual n-back and n-back tasks
in general (Owen et al., 2005) overlap considerably with the pattern of
activity elicited by the token search task and other short-term (working)
memory tests comprising CBS (Hampshire et al., 2012). Third, the dual
n-back task has been widely used in previous cognitive training studies,
some of which have reported both near and far transfer effects (Jaeggi
et al., 2010, 2008; Lilienthal et al., 2013; Salminen et al., 2016).

2.2.3. Test tasks
As in experiment 1, the spatial and digit span tasks were used to

look for evidence of training effects (see above for explanations of the
tasks). Given the considerable overlap in cognitive-neural profiles of the
dual n-back and the token search task, the same logic was applied for
selecting the spatial and digit span tasks for the second experiment; that
is, they are commonly used tasks that measure short-term (working)
memory capacity (across two domains), and are sensitive to perfor-
mance improvements (Ericcson et al., 1980; Olesen et al., 2004).

2.2.4. Statistical analyses
The same analysis protocol was used as in Experiment 1: frequentist

and Bayesian statistics to evaluate the reliability, strength and like-
lihood of any transfer effects and differences with the control group (see
statistical analysis in Experiment 1 for more information).

3. Results

3.1. Experiment 1

3.1.1. Training
Using the data from all the participants who met the criteria for data

inclusion (see methods), a paired samples t-test and a Bayesian paired
sample t-test were computed to determine whether participants im-
proved on the training task (token search task). Performance on the last
day of training (after at least 16 days) was significantly better than
performance on the first day of training (Fig. 2a&b; p < 0.001; Cohen's
d = 0.63; Bayes factor (BF10 = 385.09); r = 0.985), with participants
improving on average by 18%. Not surprisingly, even stronger training
effects were found when performance of "high learners" was compared
on the first and last day of training (Fig. 4a&b; p < 0.001, Cohen's d =
1.18; BF10 = 2367); maximum performance was reached only after 16
days, with a mean improvement of approximately 20%.

3.1.2. Transfer
To examine whether training on the token search task resulted in

improved performance on the two test tasks, and whether that im-
provement was greater than the control group, we computed a mixed
effects ANOVA, and Bayesian ANOVA, with group as the between-
subjects factor (training on the token search task vs. control), and task
(digit span vs. spatial span) testing day (pre-test vs. post-test) as the
within-subjects factor. With the exception of a main effect of task
(F(1,298) = 116.7; p < 3.5E-20; η2 = 0.281; BF10 = 1.15E21), the
analysis revealed no other significant effects. This included, no main
effects of testing day (F(1,298) = 0.2; p = 0.72; η2 = 3.36E-4; BF10 =
0.13; 1-β = 0.061), or group (F(1,298) = 1.81; p = 0.18; η2 = 0.006;
BF10 = 0.29), nor was there a significant task by testing day interaction
(F(1,298) = 0.005; p= 0.93; η2 = 1.62E-5; BF10 = 0.167), group by task
interaction (F(1,298) = 0.04; p = 0.85; η2 = 1.19E-4; BF10 = 0.168),
and testing day by group (F(1,298) = 1.39; p= 0.24; η2 = 0.005; BF10 =
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0.28).
To ensure we did not overlook subtle transfer effects for the group

that trained on the token search task, we ran a repeated measures
ANOVA, and a Bayesian repeated measures (task vs. testing day) were
computed to compare changes in behavioural performance on the digit
span and spatial span tasks before and after training. The repeated
measures ANOVA revealed no main effect of testing day (F(1,46) = 2.24;
p = 0.14; η2 = 0.05; 1-β = 0.063) and no task by testing day inter-
action (F(1,46) = 0.002; p = 0.97; η2 = 3.37E-5). A main effect of test
was observed (F(1,46) = 61.5; p < 0.001) reflecting the fact that the
two tests use different rating scales. The Bayesian repeated measures
ANOVA revealed substantial support for the null finding with a Bayes
Factor (BF10 = 0.21) for the main effect of testing day and BF10 = 0.22
for the task by testing interaction. Together these results indicate that
training on the token search task did not transfer to performance im-
provements on either the digit span or the spatial span tasks (Fig. 3a&
b).

The same pattern of results was found for the "high learners" (those
who benefited the most from training; Fig. 4a&b); not only did their
performance on the digit span not change from the pre-training to the
post-training, but performance on the spatial span was also not sig-
nificantly improved (Fig. 4b&c; main effect of testing day: F(1,22) =
1.86; p = 0.19; η2 = 0.08; 1-β = 0.066; BF10 = 0.28; and task by
testing day interaction; F(1,22) = 0.15; p = 0.702; η2 = 0.007; BF10 =
0.31). Pairwise comparisons between pre-training and post-training
scores on the spatial and digit span tasks were not significant for any
number of training sessions greater than 16.

3.2. Experiment 2

3.2.1. Training and transfer
In the second experiment, cognitive training resulted in significant

improvements on the dual N-back on the last day when compared to the
first day, (Fig. 5a&b; p < 0.001; Cohen's d = 1.41; Bayes Factor (BF10
= 7374) with improvements exceeding 60%. Despite extensive
training, (exceeding that of many previous studies using the dual N-
back task), the results of a mixed effects ANOVA, and a Bayesian
ANOVA (with group as the between subjects factor (training on the
token search task vs. control), and task (digit span vs. spatial span)
testing day (pre-test vs. post-test) as the within subjects factor) revealed
no transferable benefit to performance on the digit or spatial span tasks,
(main effect of testing day: F(1,200) = 0.02; p = 0.89; η2 = 6.33E-5;
BF10 = 0.15; 1-β = 0.05; task by testing day interaction: F(1,200) =
0.032; p= 0.86; η2 = 1.1E-4; BF10 = 0.21), Moreover, we failed to find
differences between the training and the control groups on either

testing task (main effect of group: F(1,200) = 4.8E-4; p = 0.98; η2 =
1.69E-6; BF10 = 0.15; task by group: F(1,200) = 0.4; p = 0.53; η2 =
0.001; BF10 = 0.23; testing day by group: F(1,200) = 1.82; p = 0.53; η2

= 0.006; BF10 = 0.35. Again, to ensure transfer effects within the
training group were not overlooked, we conducted a repeated measures
ANOVA, and a Bayesian ANOVA and found the same set of results
(Fig. 5c&d; main effect testing day F(1,20) = 3.53; p = 0.08; η2 = 0.15;
1-β = 0.098; BF10 = 0.32; task by testing day interaction; F(1,20) =
0.23; p = 0.641; η2 = 0.01; BF10 = 0.318). Including additional
training days did not produce significant changes in performance on
either test task.

4. Discussion

The goal of this study was to investigate whether targeted brain
training protocols produce generalizable improvements to cognition.
Across two experiments, participants trained on either the token search
task (Exp. 1) or the dual n-back task (Exp. 2), and were tested on the
spatial and digit span tasks. These tasks were chosen strategically using
quantifiable measures, in order to constrain how transfer is defined, and
maximized the likelihood of finding evidence for the benefits of brain
training. If the principles of brain training reflect the underlying
properties of cognition, this procedure should have produced evidence
in support of that.

The results from experiment 1 indicated that participants who
trained on the token search task performed significantly better at the
end of the training phase compared to the pre-training phase, im-
proving by approximately 18%. This result is important because it de-
monstrates for the first time that performance on the CBS token search
task can be improved with training, establishing that it is a viable task
for brain training programs. Despite this improvement, however, we
found no evidence that it resulted in transferable gains in performance
on the untrained test tasks; participants did not improve on either the
digit span or the spatial span tasks despite their high degree of simi-
larity to the training task. The lack of improvement was particularly
surprising in the case of spatial span, which is conceptually almost
identical in design and implementation to the training task (both re-
quire participants to remember the location of boxes on the screen), as
well as in terms of the cognitive mechanisms that are required (Owen
et al., 1990), and the underlying neural structures that are recruited
(Owen et al., 1996). A similar pattern of results was found in experi-
ment 2. While participants significantly improved on the dual n-back,
by a margin comparable to other training studies using the dual n-back
(Heinzel et al., 2014; Jaeggi et al., 2010, 2008; Lilienthal et al., 2013),
their performance on the digit span and spatial span tasks did not

Fig. 2. Performance on the Token search task throughout training phase. A. Red lines represent changes in performance for each participant relative to their best
score across the 20 days of training (group level performance is marked by the black line). B. Performance on the Token search task significantly improved from the
first to last day of training; Bars plots represent mean performance, and box and whiskers plots depicting median score enclosed by from 25th to 75th quartiles;
whiskers extend to maximum and minimum values not considered outliers. Individual scores are shown in black circles. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.).
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change after training. Taken together, the results of both experiments
indicate that performance on the digit span and spatial span tasks was
nearly identical independent of training program – that is, whether
participants trained on the token search task (even for "high learners")
or the dual n-back task. In fact, all participants who completed the
training, scored similarly to a control group who completed both test
tasks, but did not engage in any form of training.

Is it possible that these results can be explained by factors unrelated
to brain training that may have interfered with our ability to detect
transferable improvements in cognition? For example, were the wrong
training tasks used? This is unlikely because the dual n-back task has
been used widely across a number of brain training studies, some of
which have found evidence to support generalizable improvements to
short-term memory following training (Jaeggi et al., 2010, 2008;
Lilienthal et al., 2013). Moreover, the token search task shares many of
the same properties as the dual n-back; they activate a similar network
of brain regions and rely on similar cognitive processes. If short-term
memory-based brain training reliably produced global benefits to cog-
nition, those effects should have been replicated in these experiments,
and they should have extended to the token search task.

A second possible reason why transferable improvement to un-
trained short-term memory tasks were not observed is because the test
tasks used were not sufficiently sensitive to the effects of training. This
is also unlikely for three reasons: first, the spatial span (Bellander et al.,
2011; Chein and Morrison, 2010; Olesen et al., 2004) and the digit span

tasks (Ericcson et al., 1980; Ericsson and Chase, 1982) have been shown
to be sensitive to improvement, even after subtle changes in cognitive
function due to practice (Ericcson et al., 1980), disease, or pharmaco-
logical intervention (Owen et al., 2010). Second, both the digit span
and the spatial span tasks (or variants of them) are commonly used as
test tasks in studies that test for the degree of transfer after training, and
in some cases performance on both of these tasks improved
(Caeyenberghs et al., 2016; Jaeggi et al., 2008; Lilienthal et al., 2013).
Third, the test tasks were selected because they are quantifiably very
similar to the training tasks, based on overlapping cognitive, and neural
profiles (Hampshire et al., 2012). By doing so, it was possible to ensure
that the cognitive system that is assumed to be enhanced by training (in
this case short-term memory), is also the primary cognitive system re-
quired to complete the test tasks. Indeed, Klingberg et al. (2010) have
argued that training on short-term memory produces neural plasticity
in brain regions, and networks supporting short-term memory pro-
cesses. If this principle accurately characterizes the properties under-
lying brain training, the experimental design used here should have
detected the behavioural manifestations of these changes, resulting in
generalizable improvement across similar tasks.

Could it be that the training protocol used in the current experi-
ments was too short, and participants did not receive enough training
(and therefore, improve sufficiently on the training task), to improve
their scores on untrained tasks? Again, this factor does not provide an
adequate explanation for the results observed. Our participants trained

 

Fig. 3. Performance on the test tasks. A. No difference in
performance on the spatial span task at pre-training and
post-training, for either the training group (left column) or
the control group (right column) We also found no dif-
ference in performance between the two groups. Box and
whisker plot depict median performance (horizontal black
line) the edge of the box marks the 25th and 75th quar-
tiles. The whiskers indicate the highest and lowest values
not considered outliers. Grey lines represent changes in
performance for each participant; solid lines indicate im-
proved performance and dashed lines indicated a decrease
in performance. B. The same set of results was found for
the digit span task; the same plots were used as in figure a
but for performance on the digit span.
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on both the token search task and the dual n-back task for approxi-
mately 13, and 12.5 h, respectively, an amount consistent with most
brain training studies (Anguera et al., 2012; Heinzel et al., 2014; Redick
et al., 2013; Thompson et al., 2013) and longer than many studies that
have reported transfer effects (Jaeggi et al., 2010, 2008; Lilienthal
et al., 2013), which featured prominently in our design to replicate
those findings. However, if brain train training results in global gains in
short-term memory, showing significant improvements on the training
task should be the only requirement, independent of training duration
(Jaeggi et al., 2010). In these experiments, very large improvements
were observed on both training tasks. Indeed, the degree to which
participants improved on the token search task is comparable to the
amount participants improved on short-term memory tasks used in
other brain training studies (for example, (Holmes et al., 2009;
Morrison and Chein, 2010), and participants improved on the dual n-
back to a level at least equivalent to many other studies that used it as a
training task, importantly, including studies that found transferable
gains after training (Anguera et al., 2012; Jaeggi et al., 2010, 2008;
Salminen et al., 2016; Thompson et al., 2013). In fact, the duration of
the training protocol used here may have been longer than necessary;

participants reached maximum and stable improvement on both
training tasks after the 16th day, suggesting that more training would
not have significantly improved performance on the training task, and
would therefore likely have no additional benefit to performance on the
test tasks either. Even those who benefited the most from the training
did not improve on the untrained short-term memory tasks. Finally,
performance on the test tasks by the control group did not differ from
performance on the same tasks after training on either the token search
or the dual n-back tasks.

Perhaps our null findings are due to potential biases associated with
on-line data collection. This is unlikely to affect our results. Accuracy of
online data has been shown to be reliable and valid (Morrison et al.,
2015; Rosa et al., 2014; Ruano et al., 2016), and data obtained from
online platforms, such as Mechanical-Turk, are not only of high-quality
(Crump et al., 2013), but have been used to replicate various psycho-
logical findings (Buhrmester et al., 2011). Beyond the general utility of
online data collection, the CBS platform used in the current study has
also been used successfully in previous large-scale studies (Hampshire
et al., 2012; Owen et al., 2010). Moreover, we found no difference in
performance on the token search task (Experiment 1) between

Fig. 4. Performance on the Token search and test tasks (Spatial and Digit span). A. Change in performance for “high learners” (N = 23) relative to their best score,
throughout the training phase (dashed red line), with the black line representing group level changes in performance. B. Significant improvement on the Token
search task on the first and last day of training; mean performance represented by bar plots (± standard error) and distribution of individual scores (black circles)
are superimposed along with box and whiskers plots (median score with the edges of the box marking 25th to 75th quartiles and whiskers extending to maximum and
minimum values not considered outliers). C,D. Despite significant improvements to the Token search task during training, this did not transfer to performance on the
Spatial span task or the Digit span task; box and whiskers plots superimposed with changes in performance for each participant (solid line representing those who
improved and dashed line representing those who did not). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.).
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participants who were recruited online (via Mechanical-Turk) and those
recruited at the University (see Supplementary Figure 1). Therefore,
while there are a number of potential limitations associated with col-
lecting data using various online platforms (Buhrmester et al., 2011),
our lack of evidence in support of brain training cannot be accounted
for based on this method of data collection. The findings reported here
provide compelling evidence that targeted brain training does not
produce generalizable improvements on untrained short-term memory
tasks in healthy participants. This was the case despite all efforts to
maximize the likelihood of finding evidence to support the purported
benefits of brain training; two different short-term memory tasks were
selected, with overlapping cognitive and neural profiles (Hampshire
et al., 2012; Owen et al., 2005). Quantifiable measures were employed
to select tests tasks that were more similar to the training task than is
commonly the case in other studies. Together, the results suggest that
brain training protocols that focus on increasing the capacity of short-
term memory do not yield generalizable improvements to cognition,
regardless of the specific training task employed.
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