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A B S T R A C T

Youth diagnosed with Attention-Deficit/Hyperactivity Disorder (ADHD) often show deficits in various measures 
of higher-level cognition, such as, executive functioning. Poorer cognitive functioning in children with ADHD has 
been associated with differences in functional connectivity across the brain. However, little is known about the 
developmental changes to the brain’s functional properties linked to different cognitive abilities in this cohort. 
To characterize these changes, we analyzed fMRI data (ADHD = 373, NT = 106) collected while youth between 
the ages of 6 and 16 watched a short movie-clip. We applied machine learning models to identify patterns of 
network connectivity in response to movie-watching that differentially predict cognitive abilities in our cohort. 
Using out-of-sample cross validation, our models successfully predicted IQ, visual spatial, verbal comprehension, 
and fluid reasoning in children (ages 6 – 11), but not in adolescents with ADHD (ages 12–16). Connections with 
the default mode, memory retrieval, and dorsal attention were driving prediction during early and middle 
childhood, but connections with the somatomotor, cingulo-opercular, and frontoparietal networks were more 
important in middle childhood. This work demonstrated that machine learning approaches can identify distinct 
functional connectivity profiles associated with cognitive abilities at different developmental stages in children 
and adolescents with ADHD.

1. Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is the most com
mon neurodevelopment disorder among children and adolescents, 
affecting an estimated 4.8 % of all Canadian children up to 19 years of 
age (Waddell et al., 2002). One reason ADHD is commonly diagnosed in 
school-aged children is because the symptoms linked to ADHD are most 
salient in the classroom (Danielson et al., 2018). For instance, ADHD is 
best characterized by a persistent pattern of inattention (inability to 
maintain focus), impulsivity (acting on instinct without thinking), 
and/or hyperactivity (excessive restlessness and movement) that can 

interfere with not only completing school-based tasks, but extends to 
daily functioning (DuPaul and Weyandt, 2006; ADHD, 2010; Long-Term 
Outcomes of ADHD, 2020; Association Between Childhood Specific 
Learning Difficulties, 2014)

One of the most common aspects of ADHD is a deficit in processing 
speed (Moura et al., 2019; WISC-IV, 2013; Jacobson et al., 2011; Katz 
et al., 2011; Rucklidge and Tannock, 2002; Fosco et al., 2020) and ex
ecutive functioning, which is comprised of three components: inhibitory 
control, cognitive flexibility, and working memory (Rucklidge and 
Tannock, 2002; WISC-IV, 2006; Willcutt et al., 2005). In recent years 
there has been considerable interest in examining neural mechanisms 
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associated with ADHD symptomology and cognitive abilities. There is 
evidence that the brain-based associations of ADHD include reduced 
activity in the prefrontal cortex, basal ganglia, cerebellum, and 
parieto-temporal regions, all of which have been shown to support 
multiple cognitive processes such as cognitive control, working memory, 
and attention (A review of the biological bases of ADHD, 2003; Fried
man and Rapoport, 2015; Krain and Castellanos, 2006). More recent 
work in this area has focused on identifying changes in functional con
nectivity profiles across this brain in children with ADHD. For instance, 
recent studies have found children with ADHD appear to have more 
diffuse pattern of functional connectivity in resting-state networks, such 
as the default mode, dorsal and ventral attention, and executive control 
networks, but also extend to control and reward pathways. Connectivity 
between regions including temporal and frontal gyri, motor areas, 
insula, anterior cingulate cortex, and precuneus that together form the 
default mode network and executive control networks appear to be 
disrupted or weaker, and regions like the prefrontal cortex are less 
segregated and less mature (Tomasi and Volkow, 2012; Bos et al., 2017; 
Marcos-Vidal et al., 2018). Disrupted connectivity in regions including 
temporal and frontal gyri, motor areas, insula, anterior cingulate cortex, 
and precuneus, which are strongly linked to ADHD symptoms and def
icits in different cognitive domains, including attention and memory 
(Zhou et al., 2019; Yerys et al., 2019; Zepf et al., 2019). However, 
several studies have also reported stronger connectivity relative to 
neurotypical child population in attentional, default mode, and execu
tive control network networks, but also somatosensory areas, and the 
anterior cingulate gyrus (Marcos-Vidal et al., 2018; Lin et al., 2021)

Although there is a large literature examining the cognitive abilities 
in individuals with ADHD, many of those studies focused on adults or 
single-age cohorts of children. Consequently, the changing neural 
mechanisms associated with cognitive abilities in children and adoles
cents with ADHD remains poorly understood.

Advancements in applying machine learning to large neuroimaging 
datasets has proven to be a valuable tool to understand the relationship 
between cognition and the underlying neural mechanisms (Weinstein 
et al., 2021; Bertolero and Bassett, 2020; Chen et al., 2022; Cui et al., 
2022; Marek et al., 2022; Rosenberg et al., 2018; Shen et al., 2017). For 
example, machine learning (i.e., Ridge regression) has been successfully 
applied to resting-state functional connectivity networks to predict fluid 
and crystalized intelligence in healthy young adults (Tian and Zalesky, 
2021). A similar approach was also used to predict links between neural 
activity in the default mode network and three task control networks 
(frontoparietal, salience, and dorsal attention) and higher-order cogni
tive functions, such as, general ability, speed/flexibility, and lear
ning/memory in younger participants (Sripada et al., 2020a). Similar 
machine learning approaches have been used to predict cognitive abil
ities, such as attention, and symptomology in children with ADHD based 
on patterns of functional connectivity (Rosenberg et al., 2017). Although 
much of this work on applying machine learning to link neural activity 
with cognitive ability has relied on resting-state data, movie-watching 
fMRI has been shown to improve functional connectivity-based predic
tion of behavior compared to resting-state (Caldinelli and Cusack, 2022; 
Gruskin and Patel, 2022; Finn and Bandettini, 2021). The few studies 
that have used movie-watching data were able to successfully predict 
cognitive abilities in neurotypical adult (Finn and Bandettini, 2021) and 
child populations (Cantlon and Li, 2013). The advantage of using 
movie-watching data is likely due to reduced motion, increased 
engagement, but perhaps most importantly, movie-watching requires 
the integration of various cognitive systems to follow the complexities of 
the plot. Moreover, individuals often have a unique interpretation of the 
movie, resulting in enhanced individual signals and therefore richer 
brain dynamics can be captured by predictive models (Meer et al., 2020; 
Vanderwal et al., 2017, 2018).

In the current study, we combined movie-watching fMRI and ma
chine learning to identify different patterns of functional network con
nectivity that best predict cognitive ability in a large cohort of children 

and adolescents with ADHD. We predicted that not only are there spe
cific neural mechanisms associated with different aspects of higher-level 
cognition in children and adolescents with ADHD, but those mechanisms 
change developmentally and are unique to different age groups. To 
explore changes in the neural mechanisms associated with cognitive 
functioning across time, participants were divided into three age bins 
and neural activity was modeled (in response to a movie) to predict the 
same set of cognitive abilities for each age bin. By splitting participants 
into three age bins, the models would either 1) predict the same set of 
cognitive abilities for all three age bins, suggesting a similar functional 
connectivity profile across development or 2) predict a different set of 
cognitive abilities for each age bin, suggesting the model captured a 
functional connectivity profile unique to age cohorts. We compared 
models using out-of-sample cross-validation (model trained on one age 
bin to predict the same cognitive ability in a different age bin) to 
determine the degree to which similar neural properties were associated 
with cognition across age bins. We analyzed shared functional connec
tivity profiles by calculating a difference score between the models 
(feature weights) trained on each age bin, revealing connections that 
changed the most or the least across age bins.

2. Methods and materials

2.1. Participants

We obtained data from the Healthy Brain Network (HBN) biobank 
(releases 1–8) as part of the Child Mind Institute (Alexander et al., 
2017). The Chesapeake Institutional Review Board approved the study, 
and details on the HBN biobank can be found at: http://fcon_1000. 
projects.nitrc.org/indi/cmi_healthy_brain_network/. The institutional 
review board at Ontario Tech University approved secondary analysis of 
the HBN data.

We included a sample of 479 data sets from children and adolescents 
between the ages 6–16 in the final analysis. The data sets consisted of a 
T1-weighted, and functional MRI scan, along with phenotypic data. We 
excluded participants with lower-quality data, based on visual inspec
tion of the T1 images and functional connectivity matrices, along with 
those who full-scale intelligent quotient scores under 70 (Supplement).

Phenotypic data included age, sex, clinical diagnosis, and six 
cognitive measures from the Wechsler Intelligence Scale (Table 1). 
Clinical diagnoses were provided by up to ten licensed clinicians after 
interviews with the parents and child (Alexander et al., 2017) which we 
used to group participants into the ADHD (at least one diagnosis of 
“ADHD”) or NT (no clinical diagnoses) group. In addition to a single 
ADHD group (n=373), we divided participants with ADHD into three 
age bins based on previous work examining brain development and 
cognitive functioning (Shaw et al., 2006): early childhood (Bin 1: ages 
6–8, n=114), middle childhood (Bin 2: ages 9–11, n=147), and 
adolescence (Bin 3: ages 12–16, n=112). Due to the smaller sample size 
(n=106), we did not divide the Neurotypical (NT) group into discrete 
age bins.

2.2. (f)MRI acquisition and preprocessing

T1-weighted anatomical and functional MR images were acquired 
while participants watched a ten-minute clip from the movie ‘Despicable 
Me’ (Alexander et al., 2017). Neuroimaging data were preprocessed and 
analyzed using the Automatic Analysis (AA) toolbox (Cusack et al., 
2015), SPM 8, and in-house MATLAB scripts (see Supplement for addi
tional details).

We generated functional connectivity matrices for each participant 
using 264 regions-of-interest (ROI) as defined in the Power et al. (2011)
atlas (Power et al., 2011). Individual ROIs comprised of spheres of 5 mm 
in radius with spatial smoothing full-width half maximum of 6 mm and 
z-score standardization. We correlated activity in each sphere to every 
other sphere, resulting in a 264 ×264 functional connectivity matrix.
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2.3. Cognitive ability

Cognitive ability was measured using the Wechsler Intelligence Scale 
for Children Fifth Edition (Wechsler Intelligence). The WISC-V measures 
a child’s intellectual ability based on five primary indices: Visual Spatial 
Index (VSI), Verbal Comprehension Index (VCI), Fluid Reasoning Index 
(FRI), Working Memory Index (WMI), and Processing Speed Index (PSI). 
In addition, the WISC-V also provides a Full-Scale IQ (FSIQ) score, which 
is derived from the five primary indices, and normalized by age 
(description of the cognitive measures can be found in the Supplement).

2.4. Computational modeling

We used two computational models to examine the relationship be
tween functional connectivity and cognitive ability: partial least squares 
(PLS) (McIntosh and Lobaugh, 2004; Xie and Redcay, 2022) and Ridge 
regression (Tavor et al., 2016; Dupré la Tour et al., 2022). Ridge and PLS 
models are ideal for high-dimensional multicollinear data and have 
built-in anti-overfitting (regularization) parameters (details about 
optimal components and alpha values in Supplement).

We first fit standard scaler models to rescale features such that they 
have the properties of a standard normal distribution with a mean of 
zero and a variance of one. This is essential because regularized linear 
models assume features are centered around zero and have variance in 
the same scale to avoid certain features dominating because of differ
ences in variance. To avoid data leakage between the training and 
testing set, we fit the standard scaler only on the training set, and it was 
applied to both the training and testing set.

2.5. Model feature weight analysis

After we trained the models, we analyzed the model’s feature 
weights using two methods. First, we assessed feature weight reliability 
between different computational models using the intraclass correlation 
coefficient (Tian and Zalesky, 2021) (ICC). In the second method, we 
used feature weights trained on one subset of the dataset and applied 
them to predict cognition on a different subset. We based prediction 
accuracy on Pearson correlations representing the degree of similarity 
between the model’s predicted values of cognitive ability and the true 
values. We calculated statistical significance by comparing the observed 
Pearson r score relative to a null distribution of Pearson r scores 
generated from 500 random permutations of the dataset. We performed 
this out-of-sample cross-validation—referred to as cross-
prediction—only on the ADHD group and evaluated it using 

permutation statistics (Supplement).
Model feature weights represent the weight (importance) associated 

with specific aspects of the functional connectivity matrix. We multi
plied the feature weights by a participant’s functional connectivity 
matrix and used this to calculate the predicted score across all cognitive 
measures. We then compared this score against the participant’s actual 
cognitive score to update the feature weights. Thus, the feature weights 
represent a heat map of important functional connections for predicting 
cognitive ability.

To explore changing neural mechanisms associated with cognitive 
development, we subtracted feature weights of models trained on early 
childhood (Bin 1) from models trained on middle childhood (Bin 2), 
with respect to cognitive ability. We used absolute values to highlight 
the magnitude of change between Bin 1 and Bin 2 feature weights. The 
absolute-value-feature-weight-differences matrix represents the 
network connections that change in importance between Bins 1 and 2. 
Large differences (top ten most dissimilar feature weight) represent 
“distinct" functional connections, while small feature-weight differences 
(top ten most similar) represent “shared” network profiles. Both the 
distinct and shared network profiles are important when considering 
cognitive development as connections that change are equally important 
as connections that do not change between early and middle childhood. 
We also computed interclass-correlations to examine developmentally 
meaningful changes in the feature-weights associated with cognitive 
abilities across development. We used a split-half approach whereby 
within age-bin ICC was computed by splitting the sample in half. That is, 
age bin 1 was split in half (across five iterations) and ICC values were 
computed between the two halves. The same approach was applied to 
age bins 2 and 3. Between age-bin ICC values were computed between 
the two halves of one age bin (e.g., age bin 1) with a sized matched 
sample in the adjacent bin (e.g., two halves in age bin 1 compared to age 
bin 2).

3. Results

3.1. Predicting age and sex in ADHD and NT

Using Ridge regression, we predicted the age (r=0.67, p<0.001) and 
sex of individuals in the ADHD group (n=373) with an accuracy of 74 % 
(p<.001). Age (r=0.36, p<0.001) and sex (60 % accuracy, p=0.01) were 
also predicted in the NT group (n=106). We class-balanced the sex 
prediction to ensure that the model was not constantly predicting the 
most prevalent sex. Moreover, we found that mean framewise 
displacement (scanner motion) was not significantly different across the 

Table 1 
Participant demographics.

Group

ADHD NT

Measure All Bin 1 Bin 2 Bin 3 All

N 373 114 147 112 106
Age 10.57 (2.53) 

6.03–15.98
7.73 (0.76) 
6.03–8.98

10.34 (0.88) 
9.04–11.96

13.75 (1.13) 
12.03–15.98

10.12 (2.78) 
6.05–16.50

Sex (M/F) 274/99 77/37 118/29 79/33 62/44
WISC FSIQ 100.13 (16.31) 

70.00–147.00
104.13 (15.47) 
73.00–138.00

98.56 (15.90) 
70.00–141.00

98.11 (16.94) 
71.00–147.00

108.58 (14.20) 
76.00–145.00

WISC VSI 102.32 (17.12) 
57.00–155.00

106.38 (16.64) 
67.00–147.00

100.73 (16.69) 
64.00–144.00

100.28 (17.46) 
57.00–155.00

105.21 (15.01) 
64.00–141.00

WISC VCI 105.04 (15.87) 
70.00–155.00

108.53 (16.06) 
70.00–146.00

104.44 (15.34) 
70.00–155.00

102.29 (15.71) 
70.00–142.00

110.58 (13.93) 
78.00–155.00

WISC FRI 101.33 (16.19) 
67.00–144.00

104.58 (15.40) 
67.00–140.00

99.14 (15.75) 
67.00–134.00

100.90 (16.98) 
67.00–144.00

107.42 (15.11) 
69.00–155.00

WISC WMI 98.54 (15.18) 
62.00–138.00

99.53 (14.83) 
67.00–138.00

97.21 (14.04) 
65.00–138.00

99.29 (16.77) 
62.00–135.00

103.92 (14.29) 
72.00–135.00

WISC PSI 93.65 (15.35) 
53.00–148.00

97.33 (15.29) 
56.00–148.00

93.12 (13.94) 
56.00–123.00

90.59 (16.38) 
53.00–132.00

106.55 (15.80) 
66.00–155.00

For each group and measure, the mean, standard deviation (in brackets), and range are provided.
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three ADHD age bins and the NT group (for all pairwise comparisons, t <
1.8832, p > 0.05; see Fig. 1 in Supplementary Material).

3.2. Predicting cognitive ability in ADHD and NT

Using Ridge regression, we found the model could predict FSIQ 
(r=0.38, p=.002), VSI (r=0.31, p=.002), VCI (r=0.39, p=.002), FRI 
(r=0.30, p=.002), and WMI (r=0.21, p=.004), but failed to predict PSI 
(r=0.05, p=.26) in the group of participants diagnosed with ADHD 
(n=373). Conversely, we could not predict FSIQ (r=0.04, p=.42), VSI 
(r=0.16, p=.11), VCI (r=0.20, p=.05), FRI (r=-0.07, p=.73), WMI 
(r=0.12, p=.21), and PSI (r=-0.06, p=.70) in the NT group (n=106). 
These p-values were corrected for multiple comparisons using the max- 
statistic method (Nichols and Hayasaka, 2003). To determine whether 
these results were driven by model choice (Table 2), the analysis was 
replicated using a partial least squares (PLS) model. We found no dif
ference in performance between the two models, except that VCI 
(r=0.23, p=.04) could be predicted in the NT group using the PLS 
model. The similarity between the two models was further supported by 
the ICC analysis which showed the weights produced by the Ridge and 
PLS model were strongly correlated (> 0.90; Supplement for additional 
details). Based on these results, we excluded the NT group, and used 
Ridge Regression for all subsequent analyses.

Across all cognitive measures, models consistently assigned the 
largest positive weights to connections within three networks: memory 
retrieval, dorsal attention network, and sensory/somatomotor (mouth), 
while inter-network connections with the largest positive weights were 
between memory retrieval and dorsal attention, memory retrieval and 
frontoparietal and between memory retrieval and cerebellar networks. 
The largest negative weights were commonly assigned to connections 
between frontoparietal and visual networks, between dorsal and ventral 
attention networks, and to networks connected with subcortical areas.

3.3. Developmental changes linking functional connectivity and cognitive 
abilities in ADHD

To examine developmental changes in the relationship between 
neural connectivity profiles and cognitive ability, we divided the ADHD 
group into three age bins (Table 3). The model successfully predicted 
FSIQ (r = 0.27, p = 0.02), VSI (r = 0.24, p =0.02), and VCI (r = 0.22, p =
0.03), but not FRI and WMI (p > 0.05) for Bin 1 (ages 6–8); and FSIQ (r =
0.35, p = 0.002), VSI (r = 0.21, p=.02), VCI (r = 0.35, p = 0.002), FRI (r 
= 0.31, p = 0.004), and WMI (r = 0.29, p = 0.004) for Bin 2 (ages 9–11). 
The model did not predict any WISC-V measure (p > 0.17) for in
dividuals in Bin 3 (ages 12–16). We found similar results using a smaller 
sample of Bin 2 (n=113) that matched the sample sizes of Bins 1 and 3; 
the model could predict FSIQ (r = 0.37, p = 0.002), VSI (r = 0.27, p =
0.01), VCI (r = 0.37, p = 0.002), FRI (r = 0.30, p = 0.006), WMI (r =
0.35, p = 0.002), but not PSI (r = 0.04, p = 0.38). The feature weights 
are shown in Fig. 2.

The feature weights for FSIQ, VSI, and VCI had positive weights for 
network connections between memory retrieval and dorsal attention, 
cingulo-opercular and sensory/somatomotor (mouth) networks, and 
within memory retrieval, sensory/somatomotor (mouth) networks. 
Negative weights were learned for connections between dorsal and 
ventral attention, memory retrieval and sensory/somatomotor (mouth), 
and between cerebellar and sensory/somatomotor (mouth) networks. 
For the Bin 2 feature weights, we found a general pattern of less-extreme 
feature weights (fewer darker-colored cells) across all cognitive mea
sures (Fig. 2, right column) relative to the entire ADHD group and Bin 1. 
This suggests that the model is not relying on specific network connec
tions, but instead is using a distributed approach to predict cognitive 
ability. However, the model identified strong negative weights for 
connections within the sensory/somatomotor (mouth) network associ
ated with predicting VCI scores, implying this network is deemphasized 

Fig. 1. : Processing stages for the neuroimaging data. There are three overall stages to the data pipeline: preprocessing, modeling, and analysis. Preprocessing 
involved correcting the raw MRI and fMRI data for motion, coregistering the structural and functional images, normalizing to a standard template, generating a 
functional connectivity matrix, and splitting the participants by age or diagnosis. Next is modelling and it starts with searching for the optimal parameters for the 
model, then training and validating the model using the functional connectivity matrices, randomly permutating the data, and ends with extracting the model’s 
feature weights. Lastly, the feature weights were analyzed by calculating the intraclass correlation coefficient, using the weights to cross-predict cognition in a 
different age bin, and visualizing the feature weights.
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for predicting VCI performance. Interestingly, this connection was 
assigned a large positive in Bin 1, which shows that the models switched 
from a positive to a negative weight from Bin 1 to Bin 2 when predicting 
VCI (see Supplement for additional details).

3.4. Cross-prediction across age bins in ADHD

Using cross-prediction (out-of-sample cross-validation), we found 
that models trained on Bin 1 and tested on Bin 2 successfully predicted 
FSIQ (r=0.33, p=.002), VSI (r=0.36, p=.002), VCI (r = 0.32, p = 0.002), 
and FRI (r = 0.15, p = 0.02) (Fig. 3). We also found the reverse; a model 
trained on Bin 2 and tested on Bin 1 successfully predicted FSIQ (r =
0.36, p = 0.002), VSI (r = 0.40, p = 0.002), VCI (r = 0.30, p = 0.002), 
and FRI (r = 0.20, p = 0.01). However, models failed to cross-predict 
WMI (r = 0.03, p = 0.35) and PSI (r = 0.07, p = 0.18) when trained 
on Bin 1 and tested on Bin 2, and when trained on Bin 2 and tested on Bin 
1; WMI (r = 0.03, p = 0.37) and PSI (r = 0.03, p = 0.40). These results 
suggest connectivity patterns associated with FSIQ, VSI, VCI, and FRI, 
but not WMI and PSI, generalize from early to middle childhood.

To identify the most similar and dissimilar feature weights that were 
trained on Bin 1 and Bin 2, we subtracted (using absolute values) the Bin 
2 feature weights from the Bin 1 feature weights for each cognitive 
measure (e.g., for FSIQ, VSI, VCI, FRI, and WMI). We found the feature 

weight profiles with the (top ten) most similar networks between early 
childhood (Bin 1) and middle childhood (Bin 2) across all cognitive 
measures comprised of four intra-network connections: the frontopar
ietal, default mode, subcortical, and dorsal attention networks. The 
feature weights associated with inter-network connections that were 
most similar between the two age groups primarily included the fron
toparietal, default mode, subcortical, and salience structures, although 
other networks were also found (but to a lesser degree) to be shared 
between age groups.

Conversely, relatively more intra-network connections were dis
similar between the two age groups across the cognitive measures, such 
as the sensory/somatomotor (mouth), cingulo-opercular, and memory 
retrieval networks, but also included cerebellar and ventral attention 
networks. Most dissimilar (top ten) inter-network connections included 
the memory retrieval, dorsal attention, sensory/somatomotor networks 
(mouth and hand) networks. Moreover, connections between cingulo- 
opercular network and other parts of the brain were more often 
shared than not between the age groups across the different cognitive 
measures. Note, the model was not able to predict FRI and WMI in Bin 1 
but was able to predict FRI and WMI in Bin 2, which does not reflect 
direct comparisons of specific cognitive abilities between the age groups 
(Fig. 4).

3.5. Validating developmental differences in model prediction accuracy

To validate the developmentally distinct predictive accuracy results, 
we computed the same analysis using a different age binning structure. 
That is, we increased the age resolution (sample matched), using a 
sliding window approach, (6–8 (N=69), 7–9 (N=75), 8–10 (N=75), 
9–11 (N=75), 10–12 (N=75), 11–13 (N=75) and 12–15 (N=75) and 
computed prediction accuracy for four cognitive abilities (full scale IQ, 
verbal comprehension, working memory, and processing speed). We 
found that in the two youngest (6–8 and 7–9) and the two oldest age bins 
(11–13, and 12–15) the model could not significantly predict cognition 
(r<0.21, p> 0.05), but significantly predict cognition all 3 cognitive 
abilities in the next three age bins (8–10, 9–11, and 10–12; r > 0.26, p<
0.015) other than working memory in 8–10 year olds (r = 0.11, p>0.05). 
Confirming our results, at no age bin could the model predict processing 
speed (Fig. 5)

We also examined whether the assigned feature-weights for age- 
dependent models (based on the three age bins) represent distinct 
developmental differences. Using a split-half approach, we computed 
within age-bin ICCs by randomly splitting the sample in half (this was 
repeated for each age bin). We also computed ICC values for the two 
halves of each age bin with the adjacent age bin (matched for sample 
size). That is, we computed ICC values for the two halves for age bin 1 
with a matched sample in age bin 2 (means plotted in Fig. 6), this was 
repeated for age bins 2 and 3. We found that ICC values for split-half 
within group comparisons were larger (other than bin 1 to bin 2 for 

Table 2 
Scores for predicting six cognitive abilities in ADHD and NT using partial least squares and Ridge regression.

ADHD (n¼373) NT (n¼106)

PLS Ridge PLS Ridge

WISC Primary Index Pearson r P-value Pearson r P-value Pearson r P-value Pearson r P-value
Intelligence Quotient (FSIQ) 0.37 .002* 0.38 .002* 0.04 .388 0.04 .417
Visual Spatial (VSI) 0.28 .002* 0.31 .002* 0.14 .129 0.16 .107
Verbal Comprehension (VCI) 0.37 .002* 0.39 .002* 0.23* .035* 0.20 .052
Fluid Reasoning (FRI) 0.30 .002* 0.30 .002* − 0.07 .737 − 0.07 .734
Working Memory (WMI) 0.17 .011* 0.21 .004* 0.08 .259 0.12 .213
Processing Speed (PSI) 0.06 .227 0.05 .257 − 0.10 .791 − 0.06 .698

The Pearson r correlations test score represents the linear correlation between the model’s predicted values of the cognitive ability and the true values. The p-value was 
calculated by comparing the observed Pearson r score to a null distribution of Pearson r scores generated from 500 random permutations of the dataset. Both the PLS 
and Ridge models predicted FSIQ, VSI, VCI, FRI, and WMI in the ADHD group at significance (p<.011) but failed to predict PSI (p=.23). For the NT group, only VCI was 
predicted at significance (p=.04) using PLS. PLS and Ridge achieved similar Pearson r correlation scores on both the ADHD and NT groups.

* values indicate statistically significant at p<.05 max-statistic corrected.

Table 3 
Scores for predicting six cognitive abilities in ADHD across three age bins using 
Ridge.

Age Bins

Bin 1 (n¼114) Bin 2 (n¼147) Bin 3 (n¼112)

WISC Primary 
Index

Pearson 
r

P- 
value

Pearson 
r

P- 
value

Pearson 
r

P- 
value

Intelligence 
Quotient 
(FSIQ)

0.27 .019* 0.35 .002* 0.11 .177

Visual Spatial 
(VSI)

0.24 .017* 0.21 .021* 0.09 .229

Verbal 
Comprehension 
(VCI)

0.22 .027* 0.35 .002* 0.04 .403

Fluid Reasoning 
(FRI)

0.05 .347 0.31 .004* − 0.01 .518

Working Memory 
(WMI)

0.05 .357 0.29 .004* 0.10 .183

Processing Speed 
(PSI)

− 0.09 .792 0.06 .263 0.09 .257

Bin 1 represents early childhood (ages 6–8), Bin 2 represents middle childhood 
(ages 9–11), and Bin 3 represents adolescence (ages 12–16). The Ridge model 
successfully predicted FSIQ, VSI, and VCI in Bin 1 (p<.03); FSIQ, VSI, VCI, FRI, 
and WMI in Bin 2 (p<.02); and no cognitive ability in Bin 3 (p>.17).

* Values indicate statistically significant at p<.05 max-statistic corrected.
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VCI) than between group comparisons for across different cognitive 
measure (Fig. 6). Bin 3 (ages 12–16) results were not plotted because ICC 
values for within and between comparisons were not significant; all 
other ICC values were significant (p < 0.05).

4. Discussion

We demonstrated that applying machine learning to movie-watching 
fMRI data is a viable tool for predicting demographic and higher-level 
cognitive abilities in children and adolescents diagnosed with ADHD. 
In a large cohort of early childhood, middle childhood, and adolescent 
participants, we built models that successfully predicted age and sex, 
and we identified shared and distinct neural mechanisms associated 
with different aspects of higher-level cognition across development in 
ADHD and NT groups.

Establishing models that can predict age and sex is important 

because it demonstrates that a dimensional data-driven approach (i.e., 
machine learning) can be used to extract information from the neural 
connectivity profile to predict aspects of development. The distinct 
feature-weight profile used by the model likely reflects that male and 
female (sex was limited to these two categories) children and adoles
cents have distinct functional patterns of brain activity and are relying 
on different neural mechanisms to process the movie. This result repli
cates and expands on previous work that generated models to predict 
age and sex (Tian and Zalesky, 2021; Dosenbach et al., 2010; Fair et al., 
2013; Rudolph et al., 2017) providing further evidence that biological 
properties, such as age and sex, could be reliably localized to specific 
important connections in the brain. Does the same apply to cognition?

Emerging from our results was predicting higher-level cognitive 
abilities followed an inverted-U pattern. That is, that model prediction 
was highest in the second age bin (ages 9–11), slightly weaker in the 
youngest age bin (6− 8) and weakest in the oldest age bin (12− 16). This 

Fig. 2. : Feature weights used to predict five cognitive abilities in the entire ADHD group, Bin 1, and Bin 2. Each row represents one of five WISC measures: 
FSIQ, VSI, VCI, FRI, and WMI. Each column represents one of three ADHD groups: All (ages 6–16), Bin 1 (ages 6–8), and Bin 2 (ages 9–11). Each scale applies to the 
feature weight matrices in the row. A feature weight matrix represents the average feature weight for all connections between two networks shown for all networks. 
Darker cells in the feature weight matrix represent more extreme values, while lighter cells represent values closer to zero. Red cells represent positive values 
(increases in value for that network connection increased the predicted cognitive score), while blue cells represent negative values (increases in value for that 
network connection decreased the predicted cognitive score). Diagonal cells represent intranetwork connections, while off-diagonal cells represent internetwork 
connections. The networks are visual (VIS), frontoparietal task control (FPN), default mode (DMN), sensory/somatomotor (hand; SMH), sensory/somatomotor 
(mouth; SMM), cingulo-opercular task control (CON), auditory (AUD), salience (SAL), memory retrieval (MEM), ventral attention (VAN), cerebellar (CER), 
subcortical (SUB), and dorsal attention (DAN). Row four represents a summary of connections weights across the networks based by taking the average feature- 
weights for each group (ADHD: All, Bin 1 and Bin 2) across the different cognitive measures.

Fig. 3. : Scores for cross-predicting six cognitive ability between Bin 1 and Bin 2. For each matrix, rows represent the age bin (Bin 1 or Bin 2) the model was 
trained on, while columns represent the age bin (Bin 1 or Bin 2) the model was tested on. The top-left to bottom-right diagonal represents training and testing the 
model within the same age bin (same scores as in Table 3), while the bottom-left to top-right diagonal represents the training the model on Bin 2 and testing on Bin 1 
and training the model on Bin 1 and testing on Bin 2 respectively. Values within each cell are the Pearson r correlation test score and represent the linear correlation 
between the model’s predicted values of the cognitive ability and the true values. Purple cells indicate statistically significant at p<.05 after being corrected for 
multiple comparisons using the max-statistic method, while grey cells indicate not statistically significant.
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Fig. 4. : Difference in feature weights between Bin 1 and Bin 2 for five cognitive abilities. Each row represents one of five WISC measures: FSIQ, VSI, VCI, FRI, 
and WMI. The left column (grey) represents all feature weight differences between Bin 1 and 2, the center column (pink) represents network connections with the 
most dissimilar values for Bin 1 and 2 (“distinct” networks), and the right column (green) represents network connections with the most similar values between Bin 1 
and 2 (“shared” networks). The distinct network profiles were obtained by thresholding all feature weight differences between Bins 1 and 2 by the ten largest 
differences. The shared network profiles were obtained by thresholding all feature weight differences between Bins 1 and 2 by the ten smallest differences. For the left 
and center columns, darker cells represent a larger difference between the feature weights assigned to Bin 1 and 2 when predicting cognition, while lighter cells 
represent a smaller difference. Diagonal cells represent intra-network connections, while off-diagonal cells represent internetwork connections.
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pattern of results was consistent when we increased the resolution of the 
age-bins and replicated our analysis using a sliding window approach; 
prediction accuracy across different measures of cognition was highest 
for individuals in middle to late childhood (between the ages of 8 and 

12). This may suggest that the link between intra brain functional con
nectivity in response to movie watching and cognitive ability is strongest 
and most consistent during middle childhood, weaker and more variable 
during early childhood and not detectable during adolescence. Although 
successfully predicting cognitive abilities based on neuroimaging data is 
consistent with previous studies (in neurotypical children (Sripada et al., 
2020b)), we were surprised that the same cognitive systems could not be 
predicted in adolescence with ADHD. One reason for this pattern of 
results is that the link between functional connectivity and cognitive 
ability in adolescence may be too weakly represented in the data. This 
could reflect more variable cognitive development in this group that was 
not equally elicited by the movie. Another interesting possibility is that 
the nature of the relationship between cognition and connectivity pro
files do not follow a linear trajectory and linear models are insufficient to 
capture the link.

Although we could generate models that predicted different cogni
tive abilities in early and middle childhood, not all cognitive systems 
were reliably predicted between the cohorts. Beyond that, the models 
that best predicted cognitive abilities were different for participants in 
early versus middle childhood. For example, the model could predict 
fluid reasoning and working memory in middle childhood but not in 
early childhood. Although previous work has suggested that verbal and 
visuospatial working memory remain relatively distinct in children ages 
4–11 (Alloway et al., 2006), our results suggest this may not be the case. 
One potential reason why we could predict working memory in middle, 
but not early childhood, is because the link between these cognitive 
abilities and the underlying neural mechanisms are either weaker or 
follow distinct developmental trajectories during this period in children 
with ADHD (Moura et al., 2019; Mayes and Calhoun, 2006). Indeed, 
maturing working memory and fluid reasoning are associated with the 
development of the frontoparietal network (Otero, 2017; Ullman et al., 
2014), and atypical development of this network is associated with 
difficulties in fluid reasoning and working memory in children between 
the ages of 6 and 12 with ADHD (Van Breukelen, 2006; Sun et al., 2020; 
Silk et al., 2008).

One similarity across the three developmental stages was that pro
cessing speed could not be predicted well in children and adolescents 
with ADHD. This is likely due to children with ADHD showing the most 
pronounced deficits in processing speed (Moura et al., 2019; Mayes and 
Calhoun, 2006). Delayed or more variable development of this cognitive 
ability may suggest that there is a weakened relationship between neural 
activity associated processing speed ability, or the representation of 
processing speed in brain activity may have greater variability, resulting 
in poorer prediction scores. Similarly, previous work found the lowest 
prediction scores on measures of speed/flexibility out of three 
higher-order cognitive functions (General Ability, Speed/Flexibility, 
and Learning/Memory) using resting-state fMRI data in 9- to 10-year-old 
children (Sripada et al., 2020b). These results suggest that neither 
movie-watching or resting-state fMRI is ideal for capturing the neural 
mechanisms related to processing speed in neurotypical children 
(Diamond, 2013) or children with ADHD.

We hypothesized models identifying unique network patterns asso
ciated with cognitive ability in one age cohort would not generalize to 
other cohorts. However, this was not the case. Instead, connectivity 
patterns associated with IQ, visual spatial, verbal comprehension, and 
fluid reasoning generalize from early to middle to childhood. The shared 
networks for predicting cognition between early and middle childhood 
were divided into two types: intra-network (within) connections and 
inter-network (between) connections. Shared intra-network connections 
were predominately made up of the frontoparietal, default mode, 
subcortical, and dorsal attention, but also included sensory (e.g., visual 
and auditory) networks. The shared inter-network connections were 
comprised primarily of the frontoparietal, default mode, memory 
retrieval, dorsal attention, and salience networks. This is not to say these 
network connections remain stable during this period; some develop
mental changes may not be tied to cognitive ability. What the shared 
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Fig. 5. : Prediction accuracy across age bins using a sliding window 
approach. Y-axis represent prediction accuracy (correlation between predicted 
score across four cognitive tests) and actual individual performance on each 
test. X-axis represent smaller age bins (increased resolution) organized in a 
sliding window 6–8 (N=69), 7–9 (N=75), 8–10 (N=75), 9–11 (N=75),10–12 
(N=75), 11–13 (N=75) and 12–15 (N=75). Prediction accuracy across all age 
bins for four cognitive abilities: 1) Full-scale IQ (black), Verbal comprehension 
(dark gray), Working memory (light gray) and Processing Speed (orange).

Fig. 6. : Interclass correlations across age bins. Y-axis represents interclass 
correlations (ICC) values (p<.05) for within and between age-bin comparisons 
for four cognitive measures; full scale IQ (black), verbal comprehension (dark 
grey), working memory (light grey) and fluid reasoning (steel grey). Each 
within age-bin values represent the mean of five random iterations, and be
tween age-bin values represent the mean of the two halves, across 
five iterations.
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network connections do imply is that the models did not change their 
importance for these network connections when predicting cognition for 
early and middle childhood. Why would the models highlight these 
networks? One possibility is that many of the shared networks, which 
have been linked to higher-level cognitive processing—such as the 
frontoparietal, memory retrieval, dorsal attention, and salience net
works—bridge cognitive maturity and the degree to which they are 
recruited during movie watching is similar between the two age groups. 
That is, young children with greater scores on cognitive abilities are 
recruiting (or not recruiting) these networks during movie watching to 
the same degree as older children, while the same relationship is true for 
early and middle childhood participants with lower scores on cognitive 
abilities.

Although we found many important shared network connections 
between the two age groups, relatively low explained variance suggests 
that the shared networks do not capture all, or even most, of the 
developmental neural mechanisms supporting higher-level cognition in 
early and middle childhood. The distinct networks for predicting 
cognition between early and middle childhood were found primarily 
within the sensory/somatomotor (mouth), cingulo-opercular, and 
memory retrieval networks, but also included subcortical, cerebellar, 
and ventral attention networks, and between the sensory/somatomotor 
networks (mouth and hand), dorsal attention, and memory retrieval 
networks. In line with our results, the sensory/somatomotor (hand) and 
memory retrieval networks connections were important when predict
ing general cognitive ability in a cohort of middle childhood participants 
(Sripada et al., 2020b). This suggests the network connectivity profile of 
the sensory/somatomotor (hand), and memory retrieval networks are 
strongly linked to cognitive development from early to middle child
hood. Contrary to our hypothesized outcomes, the connectivity profile 
in frontoparietal network was not distinctly associated with cognition in 
early versus middle childhood. Although the frontoparietal network is 
strongly linked to the development of executive function and intelli
gence (Baum et al., 2017; Deary et al., 2010), it’s possible that Despi
cable Me did not trigger the cognitive systems mediated by the 
frontoparietal network in the youngest two cohorts in our study. 
Another possibility is that movie-watching in general may not be a 
context that is sensitive enough to extract neural features associated 
with executive functioning in young children. Related to both points, 
previous studies found that the frontoparietal network is not a flexible 
hub during movie watching (Caldinelli and Cusack, 2022) to the same 
degree it has been reported to be when participants complete a set of 
demanding tasks (Cocuzza et al., 2020; Cole et al., 2013). Therefore, the 
bridge between frontoparietal activity associated with executive func
tioning during movie-watching and the WISC scales may not be suffi
ciently strong to find patterns of activity associated with executive 
functioning development.

Importantly, we were able to replicate all findings using a different 
model: partial least squares. In fact, we found a very high correspon
dence between the feature weights generated by Ridge and partial least 
squares as measured by the high intraclass correlations. This suggests 
that the models’ ability to predict cognition is likely not driven by model 
choice as both the model output (its correlation score) and the model 
internals (its feature weights) are extremely similar between Ridge and 
partial least squares. In line with our results, previous studies also re
ported finding little difference between a Lasso model and Ridge’s cor
relation score when predicting fluid and crystalized intelligence (Tian 
and Zalesky, 2021). Thus, perhaps in the space of regularized linear 
models, the choice of model does not lead to significant performance 
differences.

5. Limitations and future directions

One limitation of the current study is that we were unable to predict 
cognition in age-matched neurotypical children, despite previous 
studies demonstrating that cognition can be predicted in this 

populations (Tian and Zalesky, 2021; Finn and Bandettini, 2021; Sri
pada et al., 2020b). One potential reason is the NT group was smaller 
than the ADHD group. However, this likely does not account for our 
results because we were able to predict some cognitive measures in the 
ADHD group with a comparable sample. Another factor might be data 
quality; perhaps the noisier data for the NT group was leading to poor 
predictive performance. This is also an unlikely to account for our results 
because we could predict age and sex in the NT group. However, the 
explained variance and accuracy was lower in the NT group compared to 
the ADHD group, and lower than estimates from other studies 
(approximately 42 % explained variance but using a different task 
(Rudolph et al., 2017)). To determine whether our findings are specific 
to ADHD or generalize to other groups of children, future studies 
examining distinct neural mechanisms associated with cognitive 
development in neurotypical populations should replicate our findings 
using larger samples. It would also be valuable for future work to 
examine whether neural mechanisms associated with cognitive devel
opment are modulated by symptom severity, and in doing so identify 
differential milestones in neurocognitive development in children with 
ADHD relative to their neurotypical peers. Furthermore, different 
models would be valuable, such as those incorporating non-linear re
lationships between connectivity profiles and cognition, and 
lesion-modeling (Hebling Vieira et al., 2021) that examine changes in 
the direction of the relationship between neural mechanisms and 
cognition across development.

6. Conclusion

Different higher-order cognitive abilities in a large group of children 
and adolescents diagnosed with ADHD could be predicted using func
tional neural activity during movie watching. Prediction scores do not 
remain constant across development but instead follows an inverted-U 
developmental trajectory from early childhood to adolescence, and 
that certain neural mechanisms linked to higher-level cognition were 
shared we also found several distinct sets of neural mechanisms for 
predicting cognition between early and middle childhood.
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